Low-frequency rTMS promotes use-dependent motor plasticity in chronic stroke
A randomized trial

A. Avenanti, PhD
M. Coccia, MD
E. Ladavas, PhD
L. Provinciali, MD
M.G. Ceravolo, MD

ABSTRACT

Objective: To investigate the long-term behavioral and neurophysiologic effects of combined time-locked repetitive transcranial magnetic stimulation (rTMS) and physical therapy (PT) intervention in chronic stroke patients with mild motor disabilities.

Methods: Thirty patients were enrolled in a double-blind, randomized, single-center clinical trial. Patients received 10 daily sessions of 1 Hz rTMS over the intact motor cortex. In different groups, stimulation was either real (rTMSR) or sham (rTMSS) and was administered either immediately before or after PT. Outcome measures included dexterity, force, interhemispheric inhibition, and corticospinal excitability and were assessed for 3 months after the end of treatment.

Results: Treatment induced cumulative rebalance of excitability in the 2 hemispheres and a reduction of interhemispheric inhibition in the rTMSR groups. Use-dependent improvements were detected in all groups. Improvements in trained abilities were small and transitory in rTMSS patients. Greater behavioral and neurophysiologic outcomes were found after rTMSR, with the group receiving rTMSR before PT (rTMSR-PT) showing robust and stable improvements and the other group (PT-rTMSR) showing a slight improvement decline over time.

Conclusion: Our findings indicate that priming PT with inhibitory rTMS is optimal to boost use-dependent plasticity and rebalance motor excitability and suggest that time-locked rTMS is a valid and promising approach for chronic stroke patients with mild motor impairment.

Classification of evidence: This interventional study provides Class I evidence that time-locked rTMS before or after physical therapy improves measures of dexterity and force in the affected limb in patients with chronic deficits more than 6 months poststroke. Neurology® 2012;78:256–264

GLOSSARY

ANOVA = analysis of variance; B&B = Box and Block test; FDI = first dorsal interosseous; ISP = ipsilateral silent period; JHFT = Jebsen-Taylor Hand Function Test; NHPT = Nine-Hole Peg Test; PT = physical therapy; rMT = resting motor threshold; rTMS = repetitive transcranial magnetic stimulation; rTMSR = real repetitive transcranial magnetic stimulation; rTMSS = sham repetitive transcranial magnetic stimulation.

Physical therapy (PT) plays a critical role in promoting motor recovery after stroke; however, the functional outcomes are often of limited practical significance, particularly for chronic patients.1–3 Recently, noninvasive brain stimulation4–10 and, in particular, low-frequency repetitive transcranial magnetic stimulation11–14 (rTMS), has been used to promote functional recovery of stroke patients by suppressing the contralesional intact motor cortex (intM1) and thus reducing interhemispheric inhibition.

Although rTMS may represent an ideal tool to promote neural plasticity, especially when applied in multiple sessions,6–10,13 information on the possible long-term effects (i.e., beyond 2 weeks) of multiple sessions of combined inhibitory rTMS and PT in chronic stroke patients is meager.

Brain stimulation protocols are thought to induce a temporary state in which learning is optimized6–8; this would suggest that a close temporal relation between rTMS and PT (time-
locked rTMS) is optimal to potentiate the effect of PT. However, to date it is unclear whether time-locked rTMS should precede or follow the PT. In the present research, we sought to investigate whether multiple sessions of time-locked inhibitory rTMS (1 Hz rTMS) applied as an add-on to PT may induce long-term neurophysiologic and behavioral improvements. To test the effect of treatment order, half of the patients received PT immediately after rTMS (rTMS-PT) and the other half received PT before rTMS (PT-rTMS). Moreover, to test the effect of treatment on use-dependent plasticity, both trained and untrained motor functions were monitored for 3 months following the end of the treatment. We expected that patients receiving real rTMS (rTMS_R) would show greater functional improvements than patients receiving sham rTMS (rTMS_S). Moreover, we hypothesized that rTMS_R preceding PT could potentially prime functional networks for the physical intervention and would be most effective in promoting use-dependent plasticity. Thus, we expected to observe superior outcomes and training-specific effects in rTMS_R-PT than in the PT-rTMS_R group.

METHODS Patients. We enrolled 30 chronic stroke hemiparetic patients at the neurorehabilitation clinic of the Hospital Riuniti of Ancona in 2007–2011 (figure 1). The diagnosis was made by clinical features and confirmed by CT and MRI. Inclusion criteria were 1) unilateral stroke sparing M15; 2) >6 months after the first-ever stroke; and 3) mild upper-limb motor deficit (Motoricity index range 72–76). We excluded patients with moderate to severe motor deficits or any other clinically significant medical comorbidity. Patients underwent prolonged EEG monitoring to exclude presence of epileptic activity.
Standard protocol approvals and patient consents. Institutional review boards approved the study, and written informed consent was obtained prior to enrollment.

Design. This study was a prospective, randomized, parallel-and factorial-design, sham-controlled, phase II trial conducted at a single center that had 4 phases: 1) randomization, 2) baseline evaluations, 3) treatment, and 4) follow-up evaluations. Thirty patients were randomly assigned, using a computer random-number generator, to 1 of 4 groups receiving either rTMSR or rTMSS that were administered either immediately before or after PT, following a 2 × 2 factorial design (rTMSR-PT, PT-rTMSR, rTMSS-PT, PT-rTMSS). Power analysis conducted in previous noninvasive brain stimulation studies\(^7\) suggest a sample size of \(n = 8\) for each group to be adequate. Eight patients were randomly assigned to each experimental group (rTMSR-PT, PT-rTMSR, rTMSS-PT, PT-rTMSS), and a total of 14 patients to the sham groups (rTMSR-PT, PT-rTMSR). Since for sham stimulation, intervention order is not expected to influence performance (statistical test of this assumption in table e-1 on the Neurology® Web site at www.neurology.org), the 2 rTMSR groups were merged into a single control group.

Intervention. Treatment lasted 10 days with 2 time-locked daily interventions: 1) 25 minutes of real/sham 1 Hz rTMS\(^1\); and 2) 45 minutes of standard task-oriented-upper-limb exercises\(^2,3\). Low-frequency rTMS\(_{sh}\) was performed using a 70-mm focal coil connected to a Magstim Rapid2 stimulator (Magstim, UK). A single train of 1,500 pulses at 90% of resting motor threshold (rMT) was administered over the motor representation of the first dorsal interosseous (FDI) in the intM1; rTMS\(_{sh}\) with the same parameters was applied by positioning a 90-mm circular coil perpendicularly to the scalp so that no current was induced in the brain. All participants were blinded to the rTMS conditions and none of them had any experience with rTMS before the study. To minimize the risk of unblinding, different coil types and stimulators were used for single-pulse TMS (administered for neurophysiologic assessment; see below) and rTMS\(_{sh}\) to prevent the patients’ expectation that rTMS should produce scalp sensations as single-pulse TMS.

The PT was carried out by a therapist blinded to group allocation. PT was aimed at training hand dexterity by presenting patients with a number of daily routine tasks\(^4,5\) (e.g., grasping and manipulating objects with different affordances, size, and weight). Finger force was also trained daily (for about 5–10 minutes) using task-oriented exercises (e.g., grasping and lifting objects with different weights, squeezing soft objects) focusing on key grip (i.e., involving the adduction of thumb and index finger), which may be particularly functional in hemiparetic patients.\(^14,15\) Patients did not receive any other upper-limb PT intervention over the duration of the study.

Assessment. Primary outcomes were hand dexterity and force and were performed by a clinician blinded to group allocation. Trained (manual dexterity, key grip force) and untrained motor functions (tip-pincher and power-grip force) were both the affected and the unaffected hands were assessed. The Jherson-Taylor Hand Function Test\(^8\) (JHFT), the Nine-Hole Peg Test\(^9\) (NHPT), and the Box and Block test\(^10\) (B&B) were used to assess hand dexterity. Maximal force of key grip and tip-pincher was evaluated by means of a pinch-meter; a dynamometer was used for assessing power-grip force.\(^15\) See data supplement for details on tests and assessment procedures. To check patients’ stability, 2 pretreatment evaluations were performed 2 weeks (baseline) and 1 day before starting the treatment (pre). Post-treatment evaluations were performed 1 day (post) and 7 (follow-up 1), 14 (follow-up 2), 30 (follow-up 3), and 90 days (follow-up 4) after treatment. Before baseline, patients participated in 2 daily sessions in which they familiarized themselves with all the tests.

Secondary outcomes included measures of cortical excitability that were recorded by an experimenter unblinded to group allocation. Corticospinal excitability of both hemispheres was assessed by recording the rMT\(^10\) using a Biopac MP-150 (Biopac Corp, CA) electromyograph and a 70-mm polyurethane-coated focal coil connected to a Magstim 200 stimulator (Magstim, UK). Evaluations of rMT were performed at baseline, pre, at the start of the sixth session on day 6 (mid-treatment evaluation, mid), post, and follow-up 1–4. Evaluation of interhemispheric inhibition from intM1 to affM1 was performed at pre and post by recording the ipsilateral silent period\(^25,26\) (ISP) in the contracted FDI muscle of the affected hand by stimulation of intM1 (e-Methods).

Analysis. Preliminary analyses assured that the different groups were entirely comparable before treatment (table e-2, table e-3). The effect of treatment was evaluated as follows: for each measure, evaluation at pre, post, and follow-up 1–4 was expressed as percentage from the baseline. The 2 rTMSR groups showed entirely comparable effects at all time points (table e-1); thus, to simplify the analysis, they were merged into a single group. Changes in dexterity, force, and rMT in the 3 groups (rTMSR-PT, PT-rTMSR, rTMSS-PT, PT-rTMSS) were analyzed by means of Friedman nonparametric analysis of variance (ANOVA) for repeated measures and comparisons between pre and post-treatment conditions were evaluated with Bonferroni correction (0.05/2 = 0.025). To test whether post-treatment changes in neurophysiologic measures (ISP, intM1, and affM1 rMT at post) predicted improvements in trained (mean changes in JHFT, NHPT, B&B, key grip performance) and untrained motor functions (tip-pincher, power-grip), a correlation analysis was performed using Spearman test.

RESULTS The different groups did not differ in clinical features or demographic variables (table 1). Before treatment (baseline and pre evaluations), groups were comparable in all dexterity and force tests, showed pathologically lower performance in the affected hand, and presented a stable performance in the 2 pretreatment assessments (table e-2). Moreover, before treatment, groups showed comparable and stable motor excitability and presented higher rMT (lower excitability) in affM1 relative to intM1.\(^27\)

Treatment-related changes in motor excitability. During treatment there was a daily cumulative increase of intM1 rMT in the 2 rTMS\(_R\) groups only, indicating that rTMS\(_R\) was effective in suppressing motor excitability\(^3,17,24\); this suppression was comparable in the 2 rTMS\(_R\) groups and lasted only few days after treatment (figure e-1).

In contrast, long-lasting changes in excitability were obtained in the affM1. Friedman ANOVA per-
In the rTMSR-PT group, there were 4 women and 4 men (mean age: 64.0 years). In the rTMSS-PT group, there were 6 women and 8 men (age: 64.0 years), indicating an increase of a_{MT1} excitability. The 2 rTMSR groups were comparable to the rTMSS group at pre ($p > 0.2$), however they showed lower a_{MT1} rMT at mid, post, and follow-up 1–4 ($p < 0.01$). Notably, while the rTMSR-PT group presented a stable change in excitability, the PT-rTMSR group presented a slight decline at the last follow-ups: the 2 rTMSR groups resulted comparable at pre, mid, post, and follow-up 1 ($p > 0.1$), however at follow-up 2–4 the rTMSR-PT group presented lower rMT (greater a_{MT1} corticospinal excitability) than the PT- rTMSR ($p < 0.025$).

In the 2 rTMSR groups, assessment of iSP revealed a significant reduction of transcallosal inhibition at post relative to pre ($p < 0.01$; figure e-1); no similar reduction was found in the rTMSS group ($p = 0.6$). Moreover, the rTMSR-PT group showed greater iSP reduction relative to PT-rTMSR group and rTMSS group ($p < 0.01$; figure 2B) and the PT-rTMSR group showed greater iSP reduction than rTMSS group ($p < 0.01$). Thus, for the iSP, the superior outcome of the rTMSR-PT group was already detectable at post.

Trained motor functions. In tests tapping trained motor functions, all the groups showed an increase in performance after treatment. This increase was present in the affected but not in the unaffected hand (figure e-2) and varied in the different groups (figure 3). While improvements in the rTMSS group were modest and transitory, long-lasting increases in performance were detected in the 2 rTMSR groups: the rTMSR-PT group showed a strong improvement that was maintained until the last follow-up; in contrast, the PT-rTMSR group showed a slight improvement decline over time. This indicates that rTMSR-PT was particularly effective in promoting use-dependent plasticity.

Friedman ANOVAs performed on JHFT (figure 3A) and NHPT (figure 3B) resulted significant in all the groups (all $p < 0.01$), indicating that treatment affected fine manual dexterity. At post and all follow-ups, dexterity performance in the 2 rTMSR groups was significantly greater than prelevels ($p < 0.01$). The rTMSS group showed a modest but significant improvement at post and follow-up 1–2 ($p < 0.01$) that however returned to pretreatment level at follow-up 3–4 ($p > 0.03$). The 2 rTMSR groups were comparable to the rTMSS group at pre ($p > 0.3$); however, they showed greater JHFT and NHPT performance at all post-treatment time points ($p < 0.025$). Performance in the 2 rTMSR...
groups resulted comparable at pre, post, and follow-up 1 ($p > 0.1$); however, at follow-up 2–4 dexterity in the rTMSR-PT group was significantly greater than in the PT-rTMSR group ($p < 0.025$).

Comparable results were obtained in tests requiring less fine motor control. Friedman ANOVAs performed on B&B (figure 3C) and on key-grip force (figure 3D) resulted significant in all the groups ($p < 0.01$). At post and all follow-ups, dexterity and force performance in the 2 rTMSR groups was significantly greater than at pre ($p < 0.01$). The rTMS group showed a modest but significant improvement at post and follow-up 1 ($p < 0.01$) that however returned to pretreatment level at follow-up 2–4 ($p > 0.03$). The 2 rTMSR groups were comparable to the rTMS group at pre ($p > 0.3$); however, they showed greater performance at all post-treatment time points ($p < 0.01$). B&B and key-grip performance in the 2 rTMSR groups resulted comparable at pre, post, and follow-up 1–2 ($p > 0.03$); however, at follow-up 3–4 dexterity in the rTMSR-PT group was significantly greater than in the PT-rTMSR group ($p < 0.025$).

Untrained motor functions. A general improvement in untrained motor functions was found in the rTMSR groups with no differential effects for rTMSR-PT and PT-rTMSR (figure 4). The rTMSR groups showed a similar trend with a peak at post and a slight performance decline over time without returning to pretreatment levels.
Friedman ANOVAs performed on changes in pinch-grip force were significant in all groups (\(p \leq 0.01 \); figure 4A). The 2 rTMSR groups showed a significant increase in force at post and follow-up 1–4 relative to pretreatment levels (\(p \leq 0.01 \)). The rTMSS group showed a significant increase in force at post (\(p \leq 0.01 \)) but not at follow-up 1–4 (\(p \leq 0.03 \)). At pre the 3 groups were comparable (\(p > 0.3 \)); however, the 2 rTMSR groups outperformed the rTMSS group at all post-treatment time points (\(p < 0.025 \)). No difference between the 2 rTMSR groups was found at any post-treatment time point (\(p > 0.7 \)).

Friedman ANOVAs performed on changes in power-grip force resulted significant in the 2 rTMSR groups (\(p < 0.01 \); figure 4B) that showed a slight but significant increase in force at post and all follow-ups relative to pre levels (\(p < 0.01 \)). No significant change in force was detected in the rTMSS group (\(p = 0.1 \)). At pre the 3 groups were comparable (\(p > 0.5 \)); however, force improvements in the 2 rTMSR groups resulted greater than in the rTMSS group at all post-treatment time points (\(p < 0.01 \)). No difference between the 2 rTMSR groups was found at any post-treatment time point (\(p > 0.5 \)).

Correlation analyses. In the rTMSR groups, changes in iSP predicted improvements in tests tapping trained motor functions both at post and follow-up 4 (\(r = 0.74 \) and \(r = 0.77 \), respectively, \(p < 0.01 \); figure 2C). No similar relations were found for untrained motor functions (\(p > 0.1 \)). Moreover, no relation was found between changes in \(\text{inM1} \) or \(\text{inM1} \) rMT and behavior (\(p > 0.2 \)). Correlation analyses carried out in the rTMSS group revealed no significant correlation (\(p > 0.2 \)).

DISCUSSION After a unilateral lesion, \(\text{inM1} \) is disinhibited by the reduction in the transcallosal inhibition...
from \(\text{affM1}\). Subsequently, this phenomenon is thought to lead to an increased interhemispheric inhibition of the \(\text{affM1}\) by the disinhibited \(\text{intM1}\). As a result, chronic hemiparetic patients, like those who took part in our study, typically show less excitability in the \(\text{affM1}\) as compared to \(\text{intM1}\).

Studies suggest that abnormal interhemispheric inhibition may impede functional motor recovery in unilateral stroke and single sessions of low-frequency rTMS over \(\text{intM1}\) have been proved to transiently improve affected hand motor functions by downregulating transcallosal inhibition from the \(\text{intM1}\).

Here we addressed the issue of how to combine low-frequency rTMS with PT interventions in stroke patients with mild motor deficits. We used a time-locked rTMS strategy and tested the effect of interventions order (rTMS\(_R\)-PT vs PT-rTMS\(_R\)) on use-dependent plasticity. We hypothesized that rTMS\(_R\) preceding PT could potentially prime functional networks for the physical intervention, leading to superior outcomes. However, an alternative hypothesis would predict that rTMS\(_R\) after PT can provide a further modulation of cortical excitability that might selectively promote the stabilization of activity-dependent motor networks. Our study provides evidence that time-locked rTMS\(_R\) and PT induce 1) a reduction of interhemispheric inhibition from \(\text{intM1}\) to \(\text{affM1}\), 2) a long-term potentiation-like increase of \(\text{affM1}\) excitability, and 3) conspicuous use-dependent functional improvements, in particular when PT is preceded, not followed, by rTMS. The major functional benefit of priming PT with rTMS was particularly evident at the last follow-ups: 1–3 months after treatment the PT-rTMS\(_R\) group started to show a decline in performance and \(\text{affM1}\) excitability; in contrast, the outcomes of the rTMS\(_R\)-PT group remained stable over time. This suggests that rTMS\(_R\)-PT more than PT-rTMS\(_R\) boosts use-dependent plasticity mainly by stabilizing consolidation processes.

Notably, our data suggest a link between optimized consolidation due to priming PT with rTMS\(_R\) and inhibitory interactions between hemispheres. Indeed, at post, the superior outcome of the rTMS\(_R\)-PT group was already visible in the iSP. Moreover, changes in iSP at post correlated with activity-dependent behavioral gains at post as well as at follow-up 4, suggesting that measures of GABAergic-mediated interhemispheric inhibition were particularly sensitive to detect treatment-related neuroplastic changes and predicted functional improvements. This would be in keeping with the notions that 1) activity-dependent plasticity critically relies on the main inhibitory neurotransmitter GABA, and 2) reduction of abnormal interhemispheric inhibition plays an important role in the functional recovery of stroke patients with motor deficits.

To induce long-lasting effects, in the present research we applied low-frequency rTMS in daily multiple sessions. Notably, during treatment, we found evidence of a daily cumulative increase of rMT in \(\text{intM1}\), reflecting a decrease of membrane excitability of corticospinal neurons in the healthy hemisphere. This was paralleled by a strong cumulative increase of \(\text{affM1}\) excitability as evidenced by rMT assessment at pre, mid, and post. These findings provide direct neurophysiologic evidence that 10 days are more effective than 5 days of treatment. Moreover, they further indicate that treatment rebalanced motor excitability in the 2 hemispheres.

Our findings suggest that rTMS\(_R\) boosts the effect of PT. It should be noted that rTMS\(_S\) groups...
showed a modest improvement lasting only few weeks and no significant change in motor excitability. This is not surprising since PT duration was relatively short, patients were all in a chronic stage, and all of them had already received cycles of rehabilitation. While it is well known that PT at this stage is less effective,1–3 our data indicate that time-locked rTMS may overcome this limitation.

A potential limitation of rTMS studies is the sham method.10–14 An ideal rTMS condition should produce the same scalp sensation as the rTMSR. Given that all our patients were naive to rTMS, it is unlikely that this might have unblinded the rTMS treatment. Moreover, the different groups showed a comparable and stable pattern of results in the healthy hand, suggesting that during the evaluation they were similarly engaged in the tests.

Our study indicates that rTMSR-PT leads to superior outcomes in tests tapping trained motor functions, suggesting that priming motor networks with rTMS promotes use-dependent plasticity.37 Additional factors may have contributed to the present findings. For example, it is possible that patients receiving PT after rTMS were more attentive to the PT. Were this the case, however, we should have detected greater behavioral improvement also at post. In contrast, after treatment performance in the 2 rTMSR groups was comparable and a clear effect of interventions order was observed only in the last follow-ups. This would speak against an interpretation of the data in terms of attention and motivation. Rather we suggest that priming PT with time-locked inhibitory rTMS can create a state in which consolidation processes are optimized6–10 and GABAergic neuroplastic changes in the motor system are favored. Further studies are needed to evaluate the effect of intervention order of time-locked rTMS in the same patients. Moreover, future studies should assess whether the present findings can be extended to stroke patients with moderate to severe motor impairments.

AUTHOR CONTRIBUTIONS
A.A., E.L., L.P., and M.G.C. conceived and designed the study. A.A. (neurophysiological assessment), M.C. (behavioral testing), L.P., and M.G.C. (clinical screening) conducted the study. A.A. and M.C. analyzed the data. A.A. wrote the paper.

ACKNOWLEDGMENT
The authors thank Francesca Chiavaroli, Francesca di Tante, Eleonora Lorenzini, and Marzia Millevolte for their help in running the study.

DISCLOSURE
Prof. Avenanti serves as Academic Editor for PLoS ONE and Reviewing Editor for Frontiers in Emotion Science and receives research support from Ministero Istruzione Università Ricerca and Istituto Italiano di Tecnologia. Dr. Coccia reports no disclosures. Prof. Ladavas serves as an Associate Editor for Neuropsychologia and receives research support from Ministero Italiano Università e Ricerca (MIUR), Progetti di Ricerca di Interesse Nazionale, and Fondazione Cassa di Risparmio di Cesena. Prof. Provenzi serves as Associate Editor of Neurological Sciences. Prof. Ceravolo serves as an Assistant Editor for the European Journal of Physical and Rehabilitation Medicine.

Received December 25, 2010. Accepted in final form September 13, 2011.

REFERENCES

Editor’s Note to Authors and Readers: Levels of Evidence in Neurology

Effective January 15, 2009, authors submitting Articles or Clinical/Scientific Notes to Neurology that report on clinical therapeutic studies must state the study type, the primary research question(s), and the classification of level of evidence assigned to each question based on the AAN classification scheme requirements. While the authors will initially assign a level of evidence, the final level will be adjudicated by an independent team prior to publication. Ultimately, these levels can be translated into classes of recommendations for clinical care. For more information, please access the articles and the editorial on the use of classification of levels of evidence published in Neurology.1-3

