
Article
Transient Disruption of th
e Inferior Parietal Lobule
Impairs the Ability to Attribute Intention to Action
Highlights
d Perturbation of inferior parietal lobule (IPL) impairs intention

to action mapping

d Inferior frontal gyrus perturbation does not affect intention

reading

d Observers can still discriminate changes in kinematics after

IPL perturbation

d IPL perturbation selectively misaligns intention readout to

intention encoding
Patri et al., 2020, Current Biology 30, 4594–4605
December 7, 2020 ª 2020 The Authors. Published by Elsevier Inc
https://doi.org/10.1016/j.cub.2020.08.104
Authors

Jean-François Patri, Andrea Cavallo,

Kiri Pullar, ..., Alessio Avenanti,

Stefano Panzeri, Cristina Becchio

Correspondence
stefano.panzeri@iit.it (S.P.),
cristina.becchio@iit.it (C.B.)

In Brief

Patri et al. combine continuous theta

burst stimulation (cTBS) with

computational modeling to causally

probe single-trial intention computations

in fronto-parietal regions. They find that

stimulation over the inferior parietal

lobule deteriorates mapping from

informative kinematic features to

intention choices during action

observation.
.
ll

mailto:stefano.panzeri@iit.it
mailto:cristina.becchio@iit.it
https://doi.org/10.1016/j.cub.2020.08.104
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cub.2020.08.104&domain=pdf


OPEN ACCESS

ll
Article

Transient Disruption of the
Inferior Parietal Lobule Impairs the Ability
to Attribute Intention to Action
Jean-François Patri,1,2 Andrea Cavallo,1,3 Kiri Pullar,1,2 Marco Soriano,1,3 Martina Valente,2,4 Atesh Koul,1

Alessio Avenanti,5,6 Stefano Panzeri,2,7,8,* and Cristina Becchio1,7,*
1Cognition, Motion & Neuroscience, Center for Human Technologies, Istituto Italiano di Tecnologia, Genoa, Italy
2Neural Computation Lab, Center for Human Technologies, Istituto Italiano di Tecnologia, Genoa, Italy
3Department of Psychology, University of Turin, Turin, Italy
4Center for Mind/Brain Sciences (CIMeC), University of Trento, Rovereto, Italy
5Center for Studies and Research in Cognitive Neuroscience, Department of Psychology, University of Bologna, Cesena, Italy
6Centro de Investigación en Neuropsicologı́a y Neurociencias Cognitivas, Universidad Católica del Maule, Talca, Chile
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SUMMARY
Although it is well established that fronto-parietal regions are active during action observation, whether they
play a causal role in the ability to infer others’ intentions from visual kinematics remains undetermined. In
the experiments reported here, we combined offline continuous theta burst stimulation (cTBS) with computa-
tional modeling to reveal and causally probe single-trial computations in the inferior parietal lobule (IPL) and
inferior frontal gyrus (IFG). Participants received cTBS over the left anterior IPL and the left IFG pars orbitalis
in separate sessions before completing an intention discrimination task (discriminate intention of observed
reach-to-grasp acts) or a kinematic discrimination task unrelated to intention (discriminate peak wrist height
of the same acts). We targeted intention-sensitive regions whose fMRI activity, recorded when observing
the same reach-to-grasp acts, could accurately discriminate intention. We found that transient disruption of
activity of the left IPL, but not the IFG, impaired the observer’s ability to attribute intention to action. Kinematic
discrimination unrelated to intention, in contrast, was largely unaffected. Computational analyses of how en-
coding (mapping of intention to movement kinematics) and readout (mapping of kinematics to intention
choices) intersect at the single-trial level revealed that IPL cTBS did not diminish the overall sensitivity of inten-
tion readout tomovement kinematics. Rather, it selectivelymisaligned intention readoutwith respect to encod-
ing, deteriorating mapping from informative kinematic features to intention choices. These results provide
causal evidence of how the left anterior IPL computes mapping from kinematics to intentions.
INTRODUCTION

When watching others in action, we readily infer their intentions

from subtle changes in the way they move. Theoretical work [1–6]

and related experimental findings (e.g., [7–11]) suggest that the

ability to read the intention of an observed action is mediated by

the fronto-parietal action observation network. However, the spe-

cificneural computations involved in thisability remainunclear [12].

A major difficulty in studying how intentions are inferred from

others’ actions is the ever-changing nature of movement kine-

matics [13, 14]. Movement is ‘‘repetition without repetition’’

[15]. Averaging across repeats of nominally identical but actually

different motor acts, as done in trial-averaged analyses, can

obscure how intention information is encoded in trial-to-trial var-

iations in movement kinematics [16]. More importantly, the brain

does not operate according to an average response over aver-

aged kinematics. Real-world intention attribution requires a
4594 Current Biology 30, 4594–4605, December 7, 2020 ª 2020 The
This is an open access article under the CC BY-NC-ND license (http://
real-time estimate of intention information encoded within an

observed motor act, which can only be captured using readouts

of single-trial kinematics.

Here we developed a novel analysis framework for under-

standing how intention readout maps to the multiplicity of kine-

matic patterns with single-trial resolution. This framework was

inspired by recent mathematical advances in determining how

sensory information encoded in a neural population is read out

to inform single-trial behavioral choice [17–19]. In this study,

we adapted this approach to causally probe single-trial intention

readout computations in two core regions of the action observa-

tion network: the left inferior parietal lobule (IPL) and the left infe-

rior frontal gyrus (IFG) [10, 11, 20–28].

In both regions, neural responses to observed actions are

modulated by intention, operationally defined as the overall goal

of a two-step action sequence [2]. In monkeys, IPL (area PFG)

and IFG (area F5) neurons responsive during observation of
Authors. Published by Elsevier Inc.
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Figure 1. Experimental Design and Behavioral Discrimination Results

(A) Trial design of the discrimination tasks.

(B) cTBS targets and MRI-guided cTBS protocol.

(C) Sketch of the experimental design.

(D and E) Discrimination performance (fraction correct) in the intention discrimination task and the kinematic discrimination task. Histograms represent mean ±

SEMacross participants. The number of participants in each task (N) and Cohen’s effect size (d) of each comparison are reported. * indicates p < 0.05, ** indicates

p < 0.01, *** indicates p < 0.001, and ns indicates p > 0.05.

See also Figure S1.

ll
OPEN ACCESSArticle
grasping actions are tuned to the intention of the observed act (for

example, they respondmore vigorously when the observed grasp

is performedwith the intent to eat rather than to place) [7, 8]. In hu-

mans, a distributed pattern of activity within the IPL and IFG can

discriminate the intention of observed grasp-to-pour and grasp-

to-drink acts [29]. These results suggest that the IPL and IFG

contain information about the intention of an observed action.

However, the relationship between such information and intention

attribution remains correlational [30, 31]. Moreover, simple obser-

vation of neural activity cannot determine which features of neural

representations are read out and which neural computations

affect downstream processing [17, 32, 33]. The contribution of

the IPL and IFG to intention attribution, in terms of function (do

the IPL and IFG play a causal role in attribution of intention to ac-

tion?) and content (what and how do the IPL and IFG compute?)

remains largely undefined [12].

To investigate these questions, we applied continuous theta

burst transcranial magnetic stimulation (cTBS) to reversibly

reduce cortical excitability in the left anterior IPL and the left IFG
pars orbitalis at two intention-sensitive locations determined

based on re-analysis of fMRI data collected during observation

of the same action stimuli as used in the present study [29]. We

investigated how transient disruption of activity in these regions

influences readout computations involved in extracting inten-

tion-related information from observed grasping acts. Single-trial

analyses combined with a set of task manipulations revealed that

disruption of activity in the left anterior IPL, but not the left IFG pars

orbitalis, impaired an observer’s ability to interpret the intentional

significance of changes in discriminative kinematic features.

RESULTS

Causal Contribution of the IPL to Intention
Discrimination
To perturb fronto-parietal sites within the action observation

network, we used a cTBS protocol delivered offline for 40 s [26,

34, 35]. In three separate sessions, participants (n = 16) received

no cTBS or magnetic resonance imaging (MRI)-guided cTBS to
Current Biology 30, 4594–4605, December 7, 2020 4595
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the left IPL or left IFG before completing a two-alternative, forced-

choice (2AFC) discrimination of intention (Figures 1A–1C).

To capture natural movement variability, we selected 60 repre-

sentative reach-to-grasp acts, 30 for each intention, from a large

dataset obtained by filming naive participants reaching toward

and grasping a bottle with the intent to drink or pour. Each trial

displayed two reach-to-grasp acts in two consecutive temporal

intervals: one interval contained a grasp-to-pour act and the

other interval a grasp-to-drink act. Participants were required

to indicate, in each trial, the interval displaying the reach-to-

grasp act performed with the intent to drink (or to pour; STAR

Methods), and, at the end of the trial, to rate the confidence of

their choice (Figure 1A).

Individual targets for cTBSwere determined based on re-anal-

ysis of fMRI data [29] recorded during the observation of the

same action stimuli as used in this study. We defined separate

anatomical regions of interest (ROIs) for the left and the right

IFG pars opercularis, pars triangularis, and pars orbitalis and

for the left and right IPL. We ran separate cross-validated linear

support vector machine (SVM) classifiers within each ROI. cTBS

was applied to the ROIs with the highest decoding accuracies

(left IFG pars orbitalis and left IPL). Target regions in the pars

orbitalis of the left IFG and in the anterior portion of the left IPL

were identified as locations containing a high proportion of

discriminative (top 20%) voxels (Figure S1A; Table S1).

We used logisticmixed effectsmodels (LMEMs) [36] to test sta-

tistically whether average intention discrimination performance

differed from chance and across sessions. Discrimination perfor-

mance, computed as the fraction of correct responses, was

above chance in no cTBS and IFG cTBS but not in IPL cTBS (Fig-

ure 1D; Table S3). A likelihood ratio test from LMEMs revealed a

main effect of cTBS on discrimination performance (Table S3),

driven by a decrease in intention discrimination after IPL cTBS

relative to no cTBS and IFG cTBS (Figure 1D). The effect of IFG

cTBS relative to no cTBS was not significant (Figure 1D). We

also found no significant differences across sessions in confi-

dence ratings (Table S3). This suggests that cTBS to the IPL,

but not to the IFG, impaired the ability to discriminate intention.

Discrimination of Individual Kinematic Features
following cTBS
To investigate the selectivity of the effects reportedabove to inten-

tion discrimination, we tested a new cohort of participants (n = 19)

carrying out a 2AFC kinematic discrimination task unrelated to

intention. Action stimuli and task parameters were identical to

that of the intention discrimination task except that participants

were required to discriminate differences in the peak wrist height

of the observed acts. We found no main effect of cTBS on kine-

matic discrimination (Table S3). As shown in Figure 1E, the effect

of cTBS to the IPL (or IFG) on kinematic discrimination perfor-

mance was smaller and not significant. This suggests that,

following IPLand IFGcTBS,observers retained theability todetect

changes in individual kinematic featureswhen instructed to do so.

We were concerned that lack of cTBS effects on kinematic

discrimination might be related to the relative ease of the kine-

matic task. To control for task difficulty, we ranked trials in

each task based on intention-related information encoded in

movement kinematics (Figure S1C) and restricted the analyses

to the 10% most informative trials for intention discrimination
4596 Current Biology 30, 4594–4605, December 7, 2020
and the 10% least informative trials for kinematic discrimination.

With this selection of trials, kinematic discrimination perfor-

mance did not differ from intention discrimination performance

under no cTBS. Nonetheless, and consistent with results utilizing

all trials, the effect of IPL cTBS relative to no cTBS and IFG cTBS

on intention discrimination persisted with large effect size. In

contrast, cTBS (to the IPL or IFG) had no significant effect on ki-

nematic discrimination even with performance-matched trial

subsampling (Figure S1C). Collectively, these analyses suggest

that IPL cTBS did not impair the ability to discriminate changes

in individual kinematic features.

Using Logistic Regression to Relate Intention Encoding
and Readout at the Single-Trial Level
Having demonstrated that IPL cTBS selectively impairs trial-

averaged intention discrimination, we next developed a new

analysis framework to dissect single-trial computations involved

in reading out intention information encoded in movement kine-

matics. Intention encoding (mapping of intention to movement

kinematics) and intention readout (mapping of kinematics to

intention choice) are commonly studied as separate processes

[3]. One limitation of this approach is that it cannot determine

the contribution of specific kinematic features to task perfor-

mance [17, 37]. For example, separate encoding and readout an-

alyses may show that two kinematic features carry intention (en-

coding) information and intention choice (readout) information.

However, one feature is read out correctly and aids intention

discrimination, whereas the other feature is read out incorrectly

and hinders intention discrimination. Here we obviated this limi-

tation by investigating the intersection between intention encod-

ing and intention readout at the single-trial level. We first devel-

oped an encoding model to quantify intention information

encoded in singlemovement kinematics and identify intention in-

formation-carrying features. We then modeled intention readout

to understand how intention information carried by specific kine-

matic features is read out by human observers in each trial. We

finally computed how encoding and readout intersect in each

trial to inform intention choice. This approach allowed us to rigor-

ously test a range of hypotheses about how IPL computations

contribute to inform intention choice.

Encoding of Intention-Related Information
We represented single-trial kinematics as a vector in the 64-

dimensional space of kinematic features spanning 16 kinematic

variables over 4 time epochs (see STAR Methods, Figures 2A

and 2B, and Table 1 for example of single-trial traces of two ki-

nematic variables). The encoding model used logistic regression

to compute the probability of the first interval of each trial to

display a grasp-to-drink act (and, thus, of the second interval

to display a grasp-to-pour act) as a combination of the features

of the kinematic vector for that trial [38] (Figures 2C and 2D).

Figure 2E shows a geometric sketch of the encodingmodel in a

hypothetical, simplified kinematic space spanning only two kine-

matic features. The encoding boundary defines the border that

best separates the kinematic patterns of the two intentions. The

encoding vector, which is orthogonal to the encoding boundary

and whose components equal the logistic regression coefficients,

indicates the information axis along which changes in kinematics

maximally discriminate between intentions. In the kinematic
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Figure 2. Encoding of Task-Discriminative Information in Movement Kinematics

(A and B) Time course of WH and grip aperture for reach-to-grasp acts performed with the intent to drink or to pour. Colored curves display representative

trajectories for each intention, and colored areas display one standard deviation across executed trials.

(C and D) Schematic of the encoding model. Shown are a block diagram representation and equation of the logistic regression used to quantify intention in-

formation in movement kinematics.

(E) Sketch of the encoding model in a simplified kinematic space spanning only two kinematic features (K1 and K2). The two elliptical regions represent the

intention conditional probability distributions of the two features. The encoding boundary optimally separates the kinematics patterns into ‘‘to drink’’ and ‘‘to

pour’’ regions. The encoding vector benc
��!

indicates the maximally discriminative axis. The angle qenc between the encoding vector and the single-trial kinematic

vector K
!

can be used to classify single trials according to intention. Two different single-trial kinematic vectors with superscript i and j are shown.

(F) Performance of the encoding models, quantified as the fraction of correctly predicted trials (mean ± SEM across participants).

(G and H) Polar plot of the distribution of encoding angles across trials in the intention discrimination task and the kinematic discrimination task. For graphical

representation, the angle range is expanded so that angles of 70�–110� are mapped to a semicircle.

See also Figure S2.
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feature space, single-trial kinematic vectors are classified as ‘‘to

pour’’ or ‘‘to drink,’’ depending on which side of the boundary

they fall or, equivalently, according to the angle they form with

the encoding vector. Because in our convention the encoding

vector points toward ‘‘to drink,’’ 0�–90� encoding angles indicate

‘‘to drink,’’ whereas 90�–180� encoding angles indicate ‘‘to pour.’’

As shown in Figure 2G, ‘‘to pour’’ and ‘‘to drink’’ angle distribu-

tions were perfectly separable, being narrowly distributed

approximately 8� either side of the intention-encoding boundary
(90�)—a set of angles corresponding to the diagonals in the 64-

dimensional kinematic feature space (Figures S2E–S2G). Impor-

tantly, with all single-trial kinematic vectors pointing toward the

correct intention (Figure 2G), intention encoding reached perfect

accuracy (Figure 2F). This indicates that, despite the variability of

kinematic features across trials, variation in grasping kinematics

fully specified intention information in each trial. As expected by

task design, single-trial variations also fully specified peak wrist

height information (Figures 2F and 2H).
Current Biology 30, 4594–4605, December 7, 2020 4597
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Figure 3. Readout Model of Intention Discrimination from Single-Trial Kinematics

(A and B) Readout model. Shown are a block diagram representation and equation of the logistic regression used to quantify intention information readout.

(C) Sketch of the readout model in a simplified kinematic space spanning only two kinematic features. The two elliptical regions represent the probability dis-

tributions of the two features conditional to intention choice. The readout vector bread
��!

of regression coefficients indicates the direction in feature space that

maximally discriminates observers’ choices. The direction and distance of the single-trial kinematic vector from the readout boundary determine, through the

sigmoid logistical function, the probability of intention choice in that trial.

(D) Performance of the readout model in predicting observers’ choices in the intention discrimination task, quantified as fraction of correctly predicted trials.

(E) Scatterplots of the relationship between the observed discrimination performance and the one predicted by the readoutmodel across individual participants in

the intention discrimination task.

(F) Distance of the single-trial kinematic vector from the readout boundary as a function of confidence ratings for the intention discrimination task. This distance

was computed as themodulus of the scalar product between the single-trial kinematic vector and the readout vector. As shown in (C), the larger this distance, the

further from chance is the probability of intention choice predicted by the model. The green single-trial kinematic vector in (C), for example, has a larger distance

and, thus, a further-from-chance probability of intention choice than the blue kinematic vector.

(G–I) Same as (D)–(F) for the kinematic discrimination task.

In (D) and (G), Cohen’s effect size (d) of each comparison is reported. * indicates p < 0.05, ** indicates p < 0.01, *** indicates p < 0.001, and ns indicates p > 0.05.

See also Figure S3.
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Combined with the above findings of a higher-than-chance

but far from perfect trial-averaged performance under no cTBS

(about 57% in the intention discrimination task and 82% in the

kinematic discrimination task), these results suggest a partial

discrepancy between information encoded in grasping kine-

matics and information readout. Thus, the next question was

how human observers read out information encoded in single-

trial kinematics.
4598 Current Biology 30, 4594–4605, December 7, 2020
Readout of Intention-Related Information
We developed a readout model that used logistic regression to

predict the probability of intention attribution in each trial as a

combination of the features of the kinematic vector for that trial

(Figures 3A–3C). Figure 3C sketches the readout model in a hy-

pothetical 2-dimensional kinematic space. Similar to what is

described above for the encoding model, the readout boundary

defines the border in kinematic space best separating the two
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choices. The readout vector, orthogonal to the readout bound-

ary and with components equal to the logistic regression

coefficients, indicates the axis with maximal choice

information.

We fitted the readoutmodel, separately for each participant, to

single-trial intention choices and used confidence ratings re-

ported by observers for independent validation of the model.

Readout models were estimated separately for each participant

for no cTBS, IPL cTBS, and IFG cTBS sessions. Across trials and

participants, model performance, measured as the fraction of

intention choices correctly predicted by the model, was signifi-

cantly above chance (Figure 3D).

Although confidence ratings were not used for fitting model

parameters, we also found a positive trial-to-trial relationship be-

tween the observer’s confidence in his or her intention choice

and the distance of the single-trial kinematics vector from the

readout boundary—the border that best separates kinematic

patterns for the two intention choices (Figure 3F). This suggests

that intention choices in trials farther away from the readout

boundary (and thus classified with greater confidence by the

model) were also endorsedwith higher confidence by human ob-

servers. Similar results were obtained for a readout model using

single-trial differences in movement kinematics to predict kine-

matic discrimination (Figures 3G–3I).

Collectively, the above analyses suggest that our readout

model was able to capture task performance, providing a plau-

sible description of how well and how confidently observers per-

formed the discrimination tasks based on single-trial kinematics.

Transient Disruption of the IPL Does Not Decrease
Sensitivity of Intention Readout to Movement
Kinematics
Having verified that our readout model could account for

discrimination performance, we next used it to test alternative

hypotheses regarding the cause of the decrease in intention

discrimination following IPL cTBS (Figure 1C). First, we consid-

ered the possibility that cTBS over the IPL decreases the sensi-

tivity of intention readout to single-trial variations in movement

kinematics. This hypothesis predicts that the statistical depen-

dency between single-trial kinematics and intention choice is

weaker following IPL cTBS. To test this formally, we compared

the fraction of intention choices correctly predicted by the model

across sessions. We found no difference between no cTBS, IPL

cTBS, and IFG cTBS (Figure 3D), suggesting that diminished

sensitivity of intention readout to kinematics cannot account

for the inferior discrimination performance following IPL cTBS.

Corroborating this proposition, the average norm of the readout

vector, which is a measure of the strength of the readout [39], did

not vary across sessions (Table S4). Finally, the number of non-

zero readout coefficients also did not vary across sessions (Ta-

ble S4), suggesting that IPL cTBS did not impair the ability to

gather information from different kinematic features.

Transient Disruption of the IPL Causes Misalignment of
Intention Readout with Respect to Encoding
Having established that IPL cTBS does not influence the overall

sensitivity of intention readout to kinematics, we next considered

the hypothesis that IPL cTBS alters the ability to correctly read

out intention-related information encoded in movement
kinematics. An intuitive visualization of how well readout cap-

tures intention-related information in movement kinematics is

provided by the angle between the encoding vector and the

readout vector orthogonal to the readout boundary (Figures 4A

and 4B). The smaller the angle between these vectors, the larger

the across-trial alignment between intention encoding and

readout in kinematic space and, thus, the larger the probability

that intention information is read out correctly across trials.

At the single-trial level, alignment can be computed as the

angle between the single-trial kinematic vector and the readout

vector. Angles of 90� indicate that readout is unrelated to en-

coded intention information, angles lower than 90� (Figure 4A)

indicate correct (incorrect) readout of intention information for

‘‘to drink’’ (‘‘to pour’’) trials, and angles higher than 90� (Figure 4B)
indicate correct (incorrect) readout of intention information for

‘‘to pour’’ (‘‘to drink’’) trials.

As shown in Figure 4C, under no cTBS (and IFG cTBS), single-

trial angle distributions were centered 3� away from the readout

boundary (90�) and 5� off the diagonal in the 64-dimensional ki-

nematic feature space (along which the encoding angles are

distributed). Critically, ‘‘to pour’’ and ‘‘to drink’’ distributions

only partly overlapped, with the majority of trials (64%) distrib-

uted in the correct readout angle range.

For IPL cTBS, single-trial angles were centered only 1� away

from the readout boundary, with an almost complete overlap be-

tween intention-specific distributions and with about half of the

trials in the incorrect readout angle range (Figure 4C).

These data suggest that IPL cTBS impaired the ability to

correctly read out intention information encoded in single-trial

kinematics.

To quantify these observations, we devised a single-trial align-

ment index based on the projection of the single-trial kinematic

vector on the readout vector. Although the projection is a signed

value, we adjusted the sign so that positive (negative) alignment

indices denoted correct (incorrect) readout (STAR Methods).

Consistent with the intuition conveyed in Figure 4C, the results

revealed a significant decrease in alignment after IPL cTBS in

comparison with no cTBS and IFG cTBS (Figure 4E). To rule

out that such a decrease could be accounted for by small (and

not significant) differences in model performance across ses-

sions, we repeated the analyses, considering only trials correctly

predicted by the model. The pattern of results remained highly

similar (Figure S4C). For the kinematic discrimination task, no

cTBS and IPL cTBS did not differ in alignment (Figures S4A,

S4B, S4D, and S4E).

Alignment Predicts Individual Task Performance
Tosubstantiate the linkbetweenalignment and individual taskper-

formance,wequantified the fractionofbehaviorally correct trials at

the single-subject level as a function of alignment. For all sessions

and tasks, alignment was positively correlatedwith individual task

performance (Figure4D).Moreover, for the intentionandkinematic

tasks, the decrease in alignment correlated with the decrease in

discrimination performance following IPL cTBS on a subject-by-

subject basis (TableS5).Also, alignmentwasmorepredictiveof in-

dividual discriminationperformance thanothermodel parameters,

such as the norm and number of non-zero readout coefficients

(Figure S4). Consistent with the view that alignment reflects cor-

rectness rather than confidence of the information readout, the
Current Biology 30, 4594–4605, December 7, 2020 4599
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Figure 4. Misalignment of Readout following IPL cTBS

(A and B) Diagrams illustrating alignment (A) and misalignment (B) between intention encoding and readout in a simplified two-kinematic feature space. Con-

ventions are as in Figures 2E and 3C. The larger the angle between the encoding vector and the readout vector, the larger, on average, the angle between the

single-trial kinematic vector and the readout vector. This justifies an alignment index based on the cosine of the angle between the single-trial kinematic vector

and the readout vector, with positive alignment indices denoting correct readout.

(C) Polar plot of the distribution of readout angles for ‘‘to pour’’ and ‘‘to drink’’ trials under no cTBS, IFG cTBS, and IPL cTBS. For graphical representation, the 70�–
110� angle range is expanded to a semicircle. The dashed red line marks the readout boundary (90�).
(D) Scatterplots of alignment indices against observed task performance across participants under no cTBS, IFG cTBS, and IPL cTBS.

(E) Effect of cTBS on the alignment index. For comparison, we also show the value of the alignment index computed as the signed cosine of the encoding angle

qenc. This angle is close the diagonal line of our 64-dimensional kinematic feature space. As shown in Figure 2G, the angle qenc between the encoding vector and

the single-trial kinematic vector K
!

can be used to classify the intention of single-trial kinematics with 100% accuracy. Histograms represent mean ± SEM across

all trials and participants. * indicates p < 0.05, ** indicates p < 0.01, *** indicates p < 0.001, and ns indicates p > 0.05. See also Figure S4.
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correlation between alignment and confidence ratings was much

weaker (Table S5). Together, these results suggest that transient

disruption of the IPL selectively misaligned intention readout with

respect to encoding.

Origins of Misalignment between Intention Encoding
and Readout
To understand the origins of the misalignment induced by IPL

cTBS, we further examined the distribution and concordance

in sign of readout coefficients relative to encoding coefficients.

Given the lack of effect of IFG cTBS at the subject level and trial

level, in this analysis we focused on comparing no cTBS and

IPL cTBS.

Under no cTBS (and IPL cTBS), observers read out more

intention-informative features than expected under the null hy-

pothesis that the non-zero readout weights are assigned

randomly to features regardless of their intention information (Ta-

ble S4). A first possibility is that misalignment results from a shift

in the distribution of readout coefficients toward non-informative

kinematic features; that is, a larger fraction of non-zero readout

coefficients is assigned to non-informative individual kinematic
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features after IPL cTBS. Against this hypothesis, we found no dif-

ference in the average fraction of non-zero readout coefficients

assigned to informative kinematic features between no cTBS

and IPL cTBS (Figure 5A; see also Figure S5A for the kinematic

discrimination task). A second possible origin of misalignment

is that IPL cTBS deteriorates the mapping from informative kine-

matic features to intention choices. For example, a variation in a

particular feature encoding ‘‘to drink’’ (e.g., higher wrist height at

75% of movement duration; Figure 2A), correctly read as ‘‘to

drink’’ under no cTBS, might be incorrectly read as ‘‘to pour’’ un-

der IPL cTBS. Geometrically, this would correspond to the

readout vector and the encoding vector pointing in opposite di-

rections (Figure 4B); that is, the coefficients of the readout vector

and of the encoding vector for the considered feature having

opposite signs. Consistent with this hypothesis, the fraction of

non-zero readout coefficients correctly aligned to informative ki-

nematic features was lower in IPL cTBS compared with no cTBS

in the intention discrimination task (Figure 5B) but not in the kine-

matic discrimination task (Figure S5B). Together, these analyses

indicate that cTBS to the left IPL altered mapping of informative

kinematic features to intention choices.



A B

C D

Figure 5. Origins of Misalignment

(A) Fraction of non-zero readout coefficients assigned to informative features.

(B) Fraction of non-zero readout coefficients assigned to informative features and correctly aligned with encoding. Fraction was computed on a subject basis and

then averaged across subjects.

(C) Number of non-zero readout coefficients (in)correctly aligned to informative features in encoding. We focused on the most informative and most read out

kinematic variable: the height of the wrist (WH) and the relative abduction/adduction of the thumb and the index finger, irrespective of wrist rotation (FPX).

(D) Contribution of WH and FPX to intention discrimination performance, computed as the scalar product between the kinematic vector and the readout vector

within that feature subspace.

Histograms represent mean ± SEM across all trials and participants. * indicates p < 0.05, ** indicates p < 0.01, *** indicates p < 0.001, and ns indicates p > 0.05.

See also Figure S5.
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IPL cTBS Alters Readout of the Two Most Informative
Kinematic Features
To gain further insight into the inter-individual reproducibility of

readout, we explored how specific features were read by

different observers by computing cross-correlations between in-

dividual-participant readout coefficients. Observers showed low

cross-correlation between readout coefficients (mean ± SEM:

0.06 ± 0.02 for no cTBS, 0.03 ± 0.03 for IFG cTBS, 0.02 ± 0.01

for IPL cTBS), attesting to a diverse range of individual readout

patterns.

Strikingly, under no cTBS, the two variables that were read out

more consistently across observers (Figure S2C) were also more

informative over a wider time range in terms of encoding (Fig-

ure S2A): the height of the wrist (WH) and the relative abduc-

tion/adduction of the thumb and the index finger (FPX). Under

no cTBS, WH and FPX, readout weights correctly aligned with

respect to encoding outnumbered incorrectly aligned readout

weights (Figure 5C). IPL cTBS decreased the number of correctly

aligned readout weights for both kinematic variables. For FPX,

but not for WH, this decrease was accompanied by an increase

in the number of incorrectly aligned readout weights.
To estimate the implications of these readout patterns for sin-

gle-trial discrimination performance, we computed an index of

how much WH and FPX contributed to correct intention choice.

This index was computed as the scalar product between the ki-

nematic vector and the readout vector within the kinematic sub-

space formed by each variable. We adjusted the sign so that

positive (negative) values of this index indicate a positive (nega-

tive) contribution to the correct choice. As shown in Figure 5D,

the contribution of both features to single-trial task performance

decreased after IPL cTBS. Consistent with the pattern in Fig-

ure 5C, for FPX, but not for WH, the contribution changed from

null to negative, suggesting that, following IPL cTBS, incorrect

readout of FPX contributed to decreased task performance.

For the kinematic discrimination task, IPL cTBS had no influence

on how the most informative variables, including WH, were read

out (Figures S5C and S5D). These findings fit well with the above

reported result of a task-selective decrease in alignment be-

tween encoding and readout after IPL cTBS and confirm that,

although IPL is not necessary for processing of intention-infor-

mative kinematic features, it is necessary for mapping such fea-

tures to intention choices.
Current Biology 30, 4594–4605, December 7, 2020 4601
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DISCUSSION

The contribution of the IPL and IFG to intention reading has been

a matter of long-standing debate [4, 5]. As demonstrated by pre-

vious studies and confirmed by our re-analysis of fMRI data [29],

these regions contain intention-related information. However,

what they compute and whether these computations play a

causal role in attribution of intention to action was undetermined.

Here, we developed a novel approach, combining offline cTBS

with kinematic analysis and computational methods inspired

by neural information coding, to causally probe single-trial com-

putations in the left anterior IPL and the left IFG pars orbitalis.

This approach allowed us to draw inferences about how inten-

tion encoding and readout intersect at the single-trial level and

the role of the left anterior IPL in mapping kinematics to intention.

Many accounts of intention reading assume kinematics to be

equivocally related to intention [5, 6, 40, 41]. Contrary to this

assumption, our combined experimental and modeling results

indicate that, in our dataset, single-trial variations in movement

kinematics fully discriminate between alternative intentions. In

the absence of perturbation of neural activity, intention discrim-

ination relies on the readout of encoded information. These

findings support the previously proposed idea that human ob-

servers use subtle variations in movement kinematics to attri-

bute intention [2, 3]. An important advance of the current study

is use of an analysis intersecting encoding and readout at the

single-trial level to determine the set of kinematic features car-

rying intention information that is read out to inform behavioral

choice. This analysis proved that the pattern of readout is

sparse and idiosyncratic but not random. Under no cTBS, infor-

mative features are selected for readout more and read more

correctly than expected by chance. Notably, the two features

informative over a wider time range in terms of encoding are

also the two features more consistently read out across individ-

ual observers. Hence, in sessions where no stimulation occurs,

observers consistently rely on kinematic features carrying more

intention information. This suggest that, although readout only

partially exploits the intention information encoded in move-

ment kinematics, it nevertheless prioritizes the most diagnostic

features.

Transient disruption of the left anterior IPL did not impair the

ability to discriminate changes in specific kinematic features,

nor did it alter the relative weight given to informative versus

non-informative features. Rather, it selectively decreased align-

ment between intention encoding and readout, affecting the ob-

server’s ability to link variation in informative kinematic features

to the correct intention. Together with previous brain stimulation

studies targeting left anterior IPL [42] (rather than more posterior

and dorsal sectors of the parietal cortex [22, 26]), these results

provide causal support for an architecture in which the left ante-

rior IPL represents goals or intentions and is placed at the high-

est level of the cortical hierarchy engaged during action observa-

tion [4]. Kinematics and intention are often conceptualized and

examined as relatively independent levels of such a hierarchy

[2], leading some authors to interpret the responsivity of IPL neu-

ral populations as being tuned to intention as opposed to kine-

matics [8]. Our finding that transient disruption of activity in the

left anterior IPL affects the correct readout of informative kine-

matic features suggests that the responsivity of IPL neurons to
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kinematics should be reconsidered. We propose that, although

neurons in the left anterior IPL do not code variations in informa-

tive kinematic features, they are necessary for mapping varia-

tions to intention.

In the context of hierarchical models of action observation [4],

it may be surprising that transient disruption of the left IFG did not

affect intention discrimination. Monkey and human studies relate

the left IFG to intention coding [7, 9, 29]. Moreover, there is evi-

dence that, in humans, repetitive transcranial magnetic stimula-

tion (TMS) applied to the left IFG pars opercularis impairs inter-

pretation of the observed kinematic patterns [27, 43]. The lack

of behavioral modulation induced by cTBS to the IFG pars orbi-

talis in our study may indicate that, although potentially acces-

sible to a classifier (remember that, within the IFG, the left IFG

pars orbitalis showed the highest sensitivity in our re-analysis

of fMRI data), intention information in the left IFG pars orbitalis

does not functionally contribute to intention attribution.

In our design, the context in which the actionwas observed did

not provide intention-discriminative information. It remains to be

seen whether cTBS over the IFG pars orbitalis impairs estimation

of intention fromcontext. This possibility is consistent with a two-

pathway model of action understanding postulating a functional

dissociation of abstract (contextual) and progressively more

concrete (kinematic) representations of observed actions along

the rostral-caudal axis of the IFG [5]. Perturbation of different

IFG sites (including the IFG pars opercularis), with selective

manipulation of contextual and kinematic features, would be

needed to test this model causally and interpret our non-results

regarding the IFG.

The set of analytical methods developed in the current frame-

work could be further generalized to examine hierarchical de-

pendencies between the left anterior IPL and other intention-

sensitive regions within the action observation network, such

as the superior temporal sulcus, implicated in analysis of visual

kinematics [42, 44, 45]. Finally, our approach could be useful

for developing intuition about how atypical encoding and

readout link to deficits in social cognition [46]. For example, indi-

viduals with autism spectrum conditions are reported to have dif-

ficulties perceiving, predicting, and interpreting the actions of

others [47]. The analysis and methods presented here could be

useful tools for generating and testing alternative hypotheses

about how altered readout computations affect the ability to

make inferences about others’ mental states.
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Motor Threshold Assessment Tool 2.0 [49] https://www.clinicalresearcher.org/software.htm
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SofTaxic software EMS srl http://www.softaxic.com/

E-prime Psychology Software

Tools, Pittsburgh, PA

https://pstnet.com/; RRID:SCR_009567

PyMVPA [51] http://www.pymvpa.org/

glmnet [52] https://cran.r-project.org/web/packages/glmnet/index.html;

RRID:SCR_015505
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RRID:SCR_015654

R package: multcomp [54] https://cran.r-project.org/web/packages/multcomp/index.html;

RRID:SCR_018255

MATLAB MathWorks Inc. http://www.mathworks.com/products/matlab/;

RRID:SCR_001622
RESOURCE AVAILABILITY

Lead Contact
Further information and requests for resources should be directed and will be fulfilled by the Lead contact, Stefano Panzeri (stefano.

panzeri@iit.it).

Materials Availability
This study did not generate new unique reagents or materials.

Data and Code Availability
The data supporting the main findings of this study are available for download at the following link (https://doi.org/10.17632/

6jzbrkjpty.1). The code supporting the main findings of this study is based on public available tools listed in the Key Resource Table.

Custom functions inputting data to toolboxes will be made available by the Lead contact upon reasonable request.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Based on [55], we decided a priori to collect data from at least 15 participants in each task. We calculated a minimum sample size a

priori on the basis of the effect size of 1.091 reported by [55] (action observation, study 1; comparison against chance; given H0 = 0.5;

Mean ± SD. H1 = 0.608 ± 0.099). This analysis indicated that we would need a minimum of 15 participants to achieve 99% power to

detect a similar effect (effect size = 1.091; a = 0.05; power (1-b) = 0.99). Considering the efficacy of cTBS, we increased this estimate

and tested 20 participants in each task. Three participants were removed from the sample as they did not complete all the three ses-

sions. Additionally, two participants were unable to complete the cTBS sessions due to a too-high resting motor threshold (above

80% of maximal stimulator output). Thus, n = 16 for the intention discrimination task (10 females, 6 males, mean age 23, range

19-27 years) and n = 19 for the kinematic discrimination task (9 females, 10 males, mean age 24, range 20-28 years). All participants

were right-handed according to the Edinburgh Handedness Inventory [56] and had normal or corrected to normal vision. None of the

participants reported neurological, psychiatric, or other medical problems or any contraindication to MRI or TMS [57, 58]. Informed

written consent was obtained in accordance with the principles of the revised Helsinki Declaration [59] and with procedures cleared

by the local ethics committee (Comitato di Bioetica di Ateneo, University of Turin). All participants received monetary compensation

for their time.
e1 Current Biology 30, 4594–4605.e1–e7, December 7, 2020

mailto:stefano.panzeri@iit.it
mailto:stefano.panzeri@iit.it
https://doi.org/10.17632/6jzbrkjpty.1
https://doi.org/10.17632/6jzbrkjpty.1
https://doi.org/10.17632/6jzbrkjpty.1
https://www.adobe.com/products/premiere.html
http://www.gin.cnrs.fr/spip.php?article216
https://www.clinicalresearcher.org/software.htm
http://marsbar.sourceforge.net/
http://www.softaxic.com/
https://pstnet.com/
http://www.pymvpa.org/
https://cran.r-project.org/web/packages/glmnet/index.html
https://cran.r-project.org/web/packages/lme4/index.html
https://cran.r-project.org/web/packages/multcomp/index.html
http://www.mathworks.com/products/matlab/


ll
OPEN ACCESSArticle
METHOD DETAILS

Experimental design and procedures
The design of the intention discrimination and kinematic discrimination tasks was between-subjects, while effects of cTBS used a

within-subject design. Participants assigned to each task underwent a high-resolution MRI structural scan, after which they attended

three experimental sessions: no cTBS, cTBS to the left IPL and cTBS to the left IFG. During each of these sessions, participants

completed the intention discrimination task (or the kinematic discrimination task, depending on task assignment) followed by a

contrast discrimination task to control for cTBS effects unrelated to action observation. Participants sat in front of a 24-in. inch com-

puter screen (resolution 1280 3 800 pixels, refresh frequency 60 Hz) at a distance of 50 cm in a dimly lit room. Each session lasted

approximately 90 minutes and occurred at the same time of the day (±1 h) for each participant. Participant sessions were separated

by one week, and session type order was randomized across participants.

MRI acquisition

T1-weighted scans were acquired using a 1.5 Tesla INTERA scanner (Philips Medical Systems) equipped with a 32-channel SENSE

high-field head coil. Each high-resolution structural scan included 160 axial slices with an in-plane field of view (FOV) of 256 3 240

and a gap of 0 mm for a resolution of 13 1 x 1 mm (TR = 8.2 ms, TE = 3.80 ms, flip angle = 8 degrees). T1-weighted scans were used

for the MRI-guided neuronavigation used to target cTBS stimulation sites (see below).

MRI-guided cTBS protocol

MRI-guided cTBS was administered using a 70-mm figure-eight coil connected to a Magstim Rapid2 stimulator (Magstim, Dyfed,

UK). A SofTaxic NeuroNavigator system (EMS, Bologna, Italy) was employed to determine the coil position for all the ‘to-be-stimu-

lated’ brain regions. Specifically, individual MRI scans were used to first construct scalp surface and skull landmarks of the left peri-

auricular (A1), right periauricular (A2) and nasion (N) on the participant’s T1 MRI image. The brain scan was then normalized to

Talairach space and neuronavigation data were co-registered to measurements taken from the same points of reference (A1, A2,

N) sampled from the participant’s scalp. The intensity for the cTBS protocol was set at 90% of the resting Motor Threshold (rMT),

defined asminimal stimulation intensity producingmotor evoked potentials (MEPs) of aminimum amplitude of 50 mV in the first dorsal

interosseous (FDI) muscle [57]. To determine the rMT, for each participant for each stimulation session, we applied single pulse TMS

over the left Primary Motor Cortex (M1) and recorded the MEPs from the right FDI muscle using a Biopac MP-150 (Biopac Systems,

Inc., Santa Barbara, CA) through pairs of Ag–AgCl surface electrodes in a belly tendon montage. The rMT was determined by means

of adaptive parameter estimation by sequential testing procedure (PEST) with the Motor Threshold Assessment Tool 2.0 [49]. The

coordinates for targeting left M1 (Talairach x = �44, y = �19, z = 53) were extracted from the neurosynth reverse inference map

for the term ‘index finger’ [60]. Following the rMT estimation procedure, cTBS was delivered to the left IFG and the left IPL targets.

cTBS consisted of three pulses at 50 Hz repeatedly applied at intervals of 200ms (5 Hz) for 40 s [61]. In cTBS sessions, discrimination

tasks were administered 5 min post cTBS, that is, in the time window in which maximal inhibitory effects of stimulation have been

reported [61–65].

cTBS targets

cTBS targets were defined based on a new analysis of beta images obtained from 20 volunteers watching the same action stimuli

used in this study while undergoing fMRI [29]. Each volunteer completed three fMRI runs resulting in a total of 120 beta images

(20 participants x 3 runs x 2 intentions). MVPA analysis was performed with PyMVPA [51]. For each participant, the time course

of the blood oxygen level-dependent (BOLD) signal for each voxel was z-scored for each run and then averaged across runs for

each intention to decrease intra-subject variability and improve the signal to noise ratio [66]. We defined separate anatomical regions

of interest (ROIs) using the Automated Anatomical Labeling (AAL) [48] library contained inMarsBaR SPM toolbox [50].We trained and

tested separate linear SVMclassifier to distinguish between intentions within each ROI with accuracy assessed using leave-one-sub-

ject-out (LOSO) cross validation (see Table S1 for classification accuracies in all ROIs). For IFG, we extracted separate ROIs for IFG

pars opercularis, pars triangularis, and pars orbitalis. Intentions were classified most accurately in the left IFG pars orbitalis. The

MVPA-defined cTBS target (MNI x = �46, y = 30, z = �12, then converted to Talairach stereotactic coordinates x = �46, y = 29,

z =�12) was chosen in a central portion of the left IFG pars orbitalis that contained a large number of informative voxels (20% highest

ranked voxels; see Figure S1A). For IPL, intentions were classified with an accuracy of 0.78 in the left IPL. The MVPA-defined cTBS

target (MNI coordinates x =�58, y =�34, z = 40, then converted to Talairach stereotactic coordinates x =�57, y =�31, z = 38) was

chosen in the anterior part of the left IPL [67], which again contained a large number of voxels ranked as most informative (20% high-

est ranked voxels; Figure S1A). The SofTaxic neuronavigational system (E.M.S. srl, Bologna, Italy) located the corresponding scalp

position with an error threshold set to the default value of 2 mm.

Acquisition and analysis of kinematic data

Stimuli were selected from a dataset of 512 grasping acts obtained by recording 17 naive participants reaching toward and grasping

a bottle to pour somewater into a small glass or drink water from the bottle. Detailed apparatus and procedures are described in [55].

Briefly, reach-to-graspmovements were tracked using a near-infrared cameramotion capture systemwith nine cameras (frame rate,

100 Hz; Vicon System) and concurrently filmed from a lateral viewpoint using a digital video camera (Sony Handy Cam 3-D, 25

frames/sec). Computation of kinematic variables was based on [55] and followed identical procedures. We used a custom software

(MATLAB; MathWorks Inc., Natick, MA) to compute two sets of kinematic variables of interest: Fglobal variables and Flocal variables.

Fglobal variables (n = 4) were expressed with respect to the global frame of reference, i.e., the frame of reference of the motion capture

system. Within this frame of reference, we computed the following variables (also listed in Table 1):
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Table 1. Kinematic Variables of Interest

Kinematic Variables Definition

Wrist velocity (WV) module of the velocity of the wrist marker (millimeters per second)

Wrist height (WH) z (i.e., up-down) component of the wrist marker (millimeters)

Wrist horizontal trajectory (WHT) x (i.e., left-right) component of the wrist marker (millimeters)

Grip aperture (GA) distance between the marker placed on the tip of the thumb and

the marker placed on the tip of the index finger (millimeters)

x, y, z index (IX, IY, IZ) x, y, and z coordinates for the index (millimeters)

x, y, z thumb (TX, TY, TZ) x, y, and z coordinates for the thumb (millimeters)

x, y, z finger plane (FPX, FPY, FPZ) x, y, and z components of the thumb-index plane (millimeters)

x, y, z dorsum plane (DPX, DPY, DPZ) x, y, and z components of the radius-phalanx plane (millimeters)

Kinematic variables were computed throughout the reach-to-grasp phase of grasp-to-pour and grasp-to-drink acts from reach onset to reach offset.
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d wrist velocity, defined as the module of the velocity of the wrist marker (mm/sec);

d wrist height, defined as the z-component of the wrist marker (mm);

d wrist horizontal trajectory, defined as the x-component of the wrist marker (mm);

d grip aperture, defined as the distance between the marker placed on thumb tip and the one placed on the tip of the index finger

(mm).

To provide a better characterization of the hand joint movements, the second set of variables was expressed with respect to a local

frame of reference centered on the hand (i.e., Flocal). Within Flocal we computed the following variables:

d x-, y-, and z-thumb defined as x-, y- and z-coordinates for the thumb with respect to Flocal (mm);

d x-, y-, and z-index defined as x-, y- and z-coordinates for the index with respect to Flocal (mm);

d x-, y-, and z-finger plane defined as x-, y- and z-components of the thumb-index plane, i.e., the three-dimensional components

of the vector that is orthogonal to the plane, providing information about the abduction/adduction movement of the thumb and

index finger irrespective of the effects of wrist rotation and of finger flexion/extension;

d x-, y-, and z-dorsum plane defined as x-, y- and z-components of the radius-phalanx plane, providing information about the

abduction, adduction and rotation of the hand dorsum irrespective of the effects of wrist rotation.

Selection of action stimuli

From the full dataset of 512 grasping acts, we selected 60 grasping acts (30 grasp-to-pour; 30 grasp-to-drink) to satisfy the following

requirements: i) within-intention distance was minimized (using the metric reported in [55]); ii) median split based on maximum wrist

height led to a significant difference between ‘‘higher’’ and ‘‘lower’’ wrist height grasps (t58 = 11.2; p < 0.001); iii) peak wrist height did

not differ between intentions (p = 0.27). These requirements ensured that both intention and peakwrist information were available and

that correct response in the kinematic discrimination task was not systematically associated with a given intention (e.g., higher peak

wrist height associated with grasp-to-drink). Movies corresponding to the selected reach-to-grasp acts were used as stimuli in the

intention discrimination task and in the kinematic discrimination task. Movies were edited with Adobe Premiere Pro CS6 (mp4 format,

disabled audio, 25 frames per second, resolution 1,2803 800 pixels) so that each movie clip started with the reach onset and ended

at contact time between the hand and the bottle. Movement duration (mean ± SEM = 1.04 ± 0.02 s, range = 0.84 to 1.36 s) did not

differ between intentions (t58 = �0.30; p = 0.76). To allow participants enough time to focus on movement start, 9, 11, or 13 static

frames were randomly added at the beginning of each video. In order to equate video durations, static frames were also added at

the end of each videos in a compensatory manner.

Intention discrimination task

The intention discrimination task consisted of two blocks of 60 trials. Task structure conformed to a 2AFC design. Each trial displayed

two reach-to-grasp acts in two consecutive temporal intervals: one interval contained a grasp-to-pour act, the other a grasp-to-drink

act. Depending on block, participants had to indicate the interval (first or second) containing the grasp-to-drink or grasp-to-pour act.

Each trial started with the presentation of a white central fixation cross for 1500 ms. Then, the first grasping act was presented fol-

lowed by an inter-stimulus interval of 500 ms, after which the second grasping act was presented. After the end of the second video,

the screen prompted participants to indicate the interval (first or second) containing the grasp-to-drink (or grasp-to-pour, depending

on block) action by pressing a key. The prompt screen was displayed until response or for a maximum duration of 3000 ms. After

response, participants were requested to rate the confidence of their choice on a four-level scale by pressing a key. Pairing of videos

was randomized across trials and participants. Participants began the session by performing a practice block before themain exper-

imental task. The order of the presentation of the blocks was counterbalanced across participants. Participants received no feed-

back, neither during the experimental blocks nor during the practice block. Control analyses revealed no difference in performance

across trials within a block, and also no difference in performance between the two blocks (Tables S3 and S5). Stimulus presentation,

timing and randomization was controlled using E-prime V2.0 software (Psychology Software Tools, Pittsburgh, PA).
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Kinematic discrimination task

The kinematic discrimination task included the same stimuli and design as the intention discrimination task, except that participants

were asked to indicate the interval containing the grasp with higher (or lower, depending on block) peak vertical height of the wrist.

Control for decision biases

To identify response biases, we assessed the probability of answering ‘‘to drink’’ in the intention task and ‘‘higher’’ in the kinematic

task against chance and across sessions and found no difference. Additionally, to rule out that the decrease in intention discrimina-

tion following IPL cTBS was due to an asymmetry in performance in the two intervals (interval bias [68]), we conducted an additional

control analysis to compare the probability of correct response in the first versus the second interval across sessions. If the decrease

in intention discrimination under IPL cTBS reflected an interval bias, we would expect an interaction between interval and session.

This was not the case. While the probability of correct response when the signal was in the first interval was overall higher than the

probability of correct response when the signal was in the second interval, the interaction between interval and session was not sig-

nificant (Table S3). The pattern of results was similar for the kinematic discrimination task (Table S3).

Control contrast discrimination task

To control for cTBS effects unrelated to action observation, such as integration of evidence favoring one alternative over time, par-

ticipants performed a contrast discrimination task at the end of each session. The contrast discrimination task consisted of three

blocks of 32 trials. Each trial started with the presentation of a fixation cross (1000 ms), after which two gray rectangles were dis-

played for 1000 ms on two consecutive intervals separated by a 500 ms inter-stimulus interval. We adjusted the Michelson contrast

of the images so that, in half of the trials, the rectangles did not differ in contrast (Michelson contrast = 0%), and, in the other half of the

trials, the rectangles had a Michelson contrast of 4.76%, 6.98%, 9.09% or 11.11%. For each trial, the participant had to indicate

whether the contrast of the rectangles was ‘same’ or ‘different’ (within a 3000 ms window) and rate the confidence of their choice

on a four-level scale by pressing a key. Trials for which subjects failed to provide a response within 3000 ms were discarded from

the analyses (0.5% of trials performed by subjects in the intention discrimination group and 0.3% of trials performed by subjects

in the kinematic discrimination group). Task performance revealed no influence of IPL cTBS or IFG cTBS across sessions and tasks

(p > 0.05 in all cases) (Table S3).

QUANTIFICATION AND STATISTICAL ANALYSIS

Data preprocessing
Trials for which subjects failed to provide a response within 3000mswere discarded from the analyses (0.5%of trials for the intention

discrimination task and 0.1% of trials for the kinematic discrimination task). The first 25% of trials in each block were discarded to

account for the time needed by participants to familiarize with task and responsemapping. As a control, we verified that the pattern of

results and their significance remained similar even when including all trials. Specifically, similarly to Figure 1D, we found a significant

decrease in intention discrimination post IPL cTBS relative to both no cTBS and IFG cTBS. Kinematic discrimination did not differ

across sessions.

Single-trial kinematic vector
To model single-trial kinematics, we first averaged, for each grasping act, the 16 kinematic variables of interest over four epochs of

25%of the normalizedmovement time (0%–25%, 25%–50%, 50%–75%, and 75%–100%of movement duration defined from reach

onset to reach offset). Next, for each trial, we combined the kinematic features associated with the two grasping acts in a 64-dimen-

sional kinematic vector, K
!
, defined as:

K
!

= K1

�!� K2

�!
(Equation 1)

where K1
�!

and K2
�!

denote the vectors of kinematic features associated to the first and second reach-to-grasp act displayed in the

trials. This definition, used in all of our logistic regression analyses, reflects the assumption that, in a 2AFC task, choices are based on

comparative judgements. Using more detailed regression models that employed the kinematic features of the two grasping acts did

not improve model predictability (Figure S3). Given that the model using the full set of kinematic features had twice as many predic-

tors as themodel using the difference (128 versus 64 dimensions), but only led to a null tomarginal increase inmodel performance, for

the sake of parsimony, we used the simpler model in all analyses.

We also explored whether the number of time epochs used for the discretization of the temporal evolution of kinematic variables

influenced model performance. We compared the performance of the four-time-epoch readout model, used in all the analyses pre-

sented in themain text and supplemental figures, with that of models based on finer time discretization (six or eight time epochs). Six-

and eight-time epoch models performed no better than the four-time epoch model (p > 0.4 for all sessions, tasks and number of

epochs).

Logistic regression models of encoding and readout
Weanalyzed encoding and readout using two sets of logistic regressionmodels: encoding and readoutmodels. Logistic regression is

a linear regression for log-odds [38], and is a standard probabilistic approach to classification. Logistic regressionmodels are power-

ful for explaining behavioral strategies [69]. They confer several advantages inmodeling the dependence of a random binary variable,
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such as observers’ choice, on one or more explanatory variables [70]. For example, they assume binomial noise – the most natural

noise model for binary responses; they combine predictor variables linearly; they can be robustly fit to data; they have a graded

nonlinearity, which allows for a modulation of probabilities different from an all-or-none binarization. The latter property is particularly

suitable for a readout model as in our data discrimination performance correlated with confidence ratings in the no cTBS session

(Spearman’s correlation: rho = 0.075, p = 0.005 and rho = 0.308, p < 0.001 for the intention and kinematic discrimination tasks,

respectively), suggesting the possibility of a graded dependence of the response probability on the strength of kinematic evidence.

To aid comparison between encoding and readout models, we also used logistic regression for modeling encoding. Versions of the

encoding models based on other formulations, such as linear discriminant analysis, were also built and tested, and yielded qualita-

tively similar results.

The logistic model expressed the probability of a binary stochastic variable Y, where Y takes the values ‘to drink’ and ‘to pour’ for

intention discrimination, as a sigmoid transformation of the sum of the components of the single-trial kinematic vector K
!
. The equa-

tion of the model was as follows:

P Y =
0
to drink

0� ���K!Þ= s K
�!� b

!
+ b0Þ

��

P Y =
0
to pour

0� ���K!�
= 1� P

�
Y =

0
to drink

0� ���K!Þ
�

(Equation 2)

where s is the sigmoid function, b
!

is the vector containing the values of the regression coefficients of each kinematic feature, and b0

is the bias, kinematic independent, term.

Training logistic regression models
Training and evaluation were performed similarly for both sets of models and for both discrimination tasks. Each model was trained

on the set of the 90 trials retained for analyses. We z-scored the single-trial kinematic vectors within each model in order to avoid

penalizing predictors with larger ranges of values. To avoid over-fitting, we trained each model using elastic-net regularization,

with a value of a = 0.95 for the elastic net parameter, which provides sparser solutions in parameter space [71]. To check whether

the pattern of readout weights was robust to the choice of the elastic net hyper-parameter a, we computed for each participant the

correlation between the readout weights for a = 0.95 with the readout weights obtained with values of a ranging from 0.5 to 1. Cor-

relation values decreased with a values but remained higher than 0.9 for all a > 0.5. Thus, readout results were robust to the choice of

a. The parameter l, which controls the strength of the regularization term, was estimated for each model using leave-one-out cross-

validation. We retained for eachmodel the value lmin associated to theminimummean cross-validated error. Models were trained on

all 90 trials with the retained regularization term. Logistic regression was implemented using R glmnet package [52].

In themain text, we report the results obtained by applying this training procedure as it gives only one set of regression coefficients

per analyzed case and it is therefore easier to interpret. However, qualitatively similar results were obtainedwhen using leave-one out

cross validation on the entire procedure (on top of the cross validation used for the determination of the l parameter). The fully cross-

validated performance of encoding models remained close to 100% for both the intention and the kinematic discrimination tasks

(99.5 ± 0.1% and 98.1 ± 0.2% for the intention discrimination task and kinematic discrimination task, respectively). The fully

cross-validated performance of readout models also remained significantly above chance in all sessions and tasks (p < 0.001,

adjusted for the three comparisons in each task). The correlation between observed and predicted task performance also remained

significant in all cases (p < 0.001). Moreover, alignment was still significantly decreased after IPL cTBS as compared to no cTBS (p <

0.01).

Verification of the statistical significance of non-zero regression coefficients
To check that the regularization was working well and that the regression coefficients with non-zero value were meaningful [38], we

did a permutation test in which a null hypothesis distribution of regressionweights was obtained after randompermutations of the trial

labels. We took the absolute value of each individual regression coefficient obtained in the permuted dataset to build a distribution of

absolute values of regression coefficient expected under the null-hypothesis of no relationship between the kinematics and the var-

iable Y. We verified that all non-zero beta coefficients had an absolute value that exceeded the 95th percentile of this null-hypothesis

distribution.

Encoding model
The intention encodingmodel expressed the probability of the grasping act displayed in the first interval of a given trial being ‘to drink’

as a function of the kinematic vector measured in the same trial. Having verified that intention information slightly varied as a function

of video pairings (which were randomized across trials and participants), we trained the encoding model separately on each set of

video pairings presented in each session to each observer. We used the encoding model to evaluate the overall amount of intention

information in movement kinematics (Figures 2F and S2A). The procedures for the kinematic discrimination task were identical.
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Readout model
The intention readout model expressed the probability of intention choice in a given trial as a function of the kinematic vector

measured in the same trial. We trained the readout model separately for each observer in each session. To model intention choice

as a function of single-trial kinematics, we trained the readout model using all 64 kinematic features (16 kinematic variables at four

time epochs). The procedures for the kinematic discrimination task were identical.

Evaluation of model performance
To quantify model performance (Figures 2F, 3D, and 3G), we computed for each trial the most likely value of the variable Y by taking

the argmax over Y of PðY jK!Þ in Equation 2. This parameter provides an estimate of the model prediction (prediction of the actual

intention of the instructed action sequence for the encoding model; prediction of observer’s intention choice for the readout model)

on a single trial. We then quantifiedmodel performance as the fraction of correct predictions computed over all the trials. The chance-

level null-hypothesis distribution for readout model performance was created by fitting the model after randomly permuting across

trials the observer’s choice labels.

Computation of task performance predicted by the readout model
In Figures 3E and 3H, we used the readout model to estimate individual discrimination performance, as follows. Using the logistic

readout model (Equation 2), we computed for each trial the probability of each choice. Then we averaged across all trials the prob-

ability of the correct choice.

Classification of individual kinematic features as informative
To evaluate the informativeness of individual features about intention (which is used for Figures 5, S2A, S2B, and S5), we used a sin-

gle-feature encoding model implemented using MATLAB’s glmfit function. Eachmodel was trained on the full set of 90 trials retained

for analyses. We z-scored the single-trial kinematic vectors. Significance of the regression coefficient was assessed with t-statistics.

We retained as informative kinematic features whose regression coefficients were found to be significant (p < 0.05) in all video pair-

ings. In Figures S2A and S2B, variables are ranked in terms of their encoded information. Ranking was determined by computing the

average norm of the regression coefficient of each informative feature across all video pairings and then summing the obtained norms

across features belonging to the same kinematic variable.

Contribution of individual kinematic variables to discrimination performance
Figures 5D and S5D visualize the contribution of individual kinematic variables to discrimination performance. Single variable contri-

bution to discrimination performance was computed as the scalar product between the kinematic vector and the readout vector

calculated within the feature subspace formed by the features of the considered kinematic variable (e.g., 25%, 50%, 75% and

100% of movement time for WH). Positive (negative) values of this index imply a positive (negative) contribution of the variable toward

enhancing (decreasing) discrimination performance.

Computation of cross-correlations of readout coefficients across participants
To quantify the inter-individual reproducibility of the readout regression coefficients, we computed the cross-correlation between the

readout coefficients for each different pair of participants separately for each session.We then took themean ± SEMacross all partic-

ipant pairs, separately for each session. To check that the so obtained low cross-correlation values were robust to the choice of the

elastic net hyper-parameter a (a = 0.95 was used for all main text analyses), we recomputed the cross-correlations between readout

coefficients obtained by performing the regressions using values of a ranging from 0.5 to 1. Cross- correlations slightly increasedwith

lower a values, but remained always below 0.1. These analyses corroborate the idea that the small correlation values in the intention

discrimination task reflected genuine inter-individual differences.

Conventions for p values
The p values of all reported statistical comparisons are two-sided and Holm-Bonferroni corrected. Tables S3–S5 report the details of

Logistic Mixed Effects Models (LMEM), non-parametric permutation tests and correlation analyses, respectively. Details of proced-

ures are reported below. In all figures, * indicates p < 0.05, ** indicates p < 0.01, *** indicates p < 0.001, ns indicates p > 0.05. Following

standard notations, * above bars indicate significance of difference from chance of an individual quantity, * above brackets indicate

significance of difference between two quantities.

Logistic Mixed Effects Models for assessing statistical differences in the distribution of binary variables
We used LMEM to assess the significance of differences in discrimination performance (Figures 1D and 1E; Table S3), response bias

(Figure S1B), readout model performance (Figures 3D and 3G), and confidence ratings (high versus low; Table S3) against chance

and across sessions.

We considered the 0/1 variable in each trial (response for assessing discrimination performance, response predicted by the model

for assessing model performance, and response for assessing response bias) as dependent variable, session as categorical predic-

tor and subject identity as random effect. Logistic statistics were used because these quantities are computed from binary stochastic

variables in each trial and thus cannot be assessed with t tests or other parametric Gaussian statistics. We selected the random-
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effect structure of the model by comparing a random intercept only model (df 4) with a model including both random intercept and

random slope (df 9). We performed model selection using the Bayesian Information Criterion (BIC) [72], which rewards model fit and

penalizes model complexity (number of df). We carried out model fitting using the R package lme4 [53]. Model selection results are

reported in Table S2.

We tested for a main effect of cTBS in discrimination performance by conducting a likelihood-ratio test between Mixed Effects

Models differing only in the presence or absence of cTBS conditions as predictor [73]. We conducted comparisons across sessions

using the glht command from the R package multcomp [54]. The multcomp package estimated the value and standard error of each

effect, fromwhich a z value (for computation of two-sided p values) and a Cohen’s d value (for estimation of effect size, by diving the z

value by the square root of the number of participants) were computed. We used Cohen’s d to quantify effect size in Mixed Effects

Model because it is easy to interpret and used throughout the text for many analyses; however, readers should be aware of the

debate about which sources of variations should be considered for its computation in Mixed Effect Models [74, 75]. All p values

were Holm-Bonferroni corrected for three comparisons (IPL cTBS versus no cTBS, IFG cTBS versus no cTBS, and IPL cTBS versus

IFG cTBS).

Permutation test for assessing statistical differences in readout coefficients and alignment
For assessing differences in alignment (Figures 4E and S4D–S4F) and in the contribution of individual features to discrimination per-

formance (Figures 5D and S5D), we used non-parametric permutation statistics based on constructing a null-hypothesis distribution

of differences in values after randomly permuting session labels across trials. For assessing significance of differences in the readout

regression coefficients computed for each subject across sessions (Figures 5A, 5B, S5A, and S5B), we used a similar session label

permutation test for regression coefficients. For all tests, the null-hypothesis distribution was computed using 104 random permu-

tations. In all permutation tests, reported p values are two-sided. All p values were Holm-Bonferroni corrected for three comparisons

(IPL cTBS versus no cTBS, IFG cTBS versus no cTBS, and IPL cTBS versus IFG cTBS), except for Figures 5 and S5, in which we only

compared no cTBS against IPL cTBS.

Statistical significance of correlations
Significance of Pearson’s correlation values and stepwise regression coefficients were assessed using two-sided parametric Stu-

dent statistics [76] implemented in the MATLAB functions corr and stepwisefit, respectively. We assessed significance of Spearman

correlations using the two-sided permutation distribution [77] implemented in theMATLAB function corr. All p valueswereHolm-Bon-

ferroni corrected for three comparisons (IPL cTBS versus no cTBS, IFG cTBS versus no cTBS, and IPL cTBS versus IFG cTBS).
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