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Cortico-cortical paired-associative stimulation to 
investigate the plasticity of cortico-cortical visual 
networks in humans☆ 

Luca Tarasi1,*,#, Sonia Turrini1,*,#, Alejandra Sel2,3,#,  
Alessio Avenanti1,4,# and Vincenzo Romei1,5,#   

Cortico-cortical paired-associative stimulation (ccPAS) is an 
advanced dual-site transcranial magnetic stimulation technique that 
exploits the Hebbian principle to induce plastic changes in functional 
networks and modulate interactions between cortical brain regions. 
This review summarizes the growing body of ccPAS research on 
network dynamics underpinning visual perception. Studies revealed 
a functional dissociation within cortico-cortical connections in the 
visual system, where distinct hierarchically organized circuits shape 
diverse aspects of visual processing, including motion perception, 
emotion recognition, and metacognitive judgments. Prospective 
applications integrating ccPAS with neuroimaging techniques such 
as EEG/MEG hold promise for fine-tuning interventions and gaining 
deeper insights into visual system network dynamics and functional 
architecture, with potential clinical applications in neurological and 
psychiatric conditions. 
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Introduction 
The emergence of advanced noninvasive brain stimu-
lation (NIBS) techniques has prompted a transformative 
shift in cognitive neuroscience, leading to the develop-
ment of novel conceptual frameworks and practical ap-
plications. Transcranial magnetic stimulation (TMS) has 
gained considerable recognition among NIBS meth-
odologies due to its high adaptability and safety in 
modulating brain activity [1–3]. Studies have used TMS 
to perturb specific cortical regions and test their critical 
role in behavior, demonstrating, for example, that V5 
plays a key role in the perception of visual motion [4], 
the occipital face area and extrastriate body area are 
important for perceiving morphological aspects of faces 
and bodies [5,6], and the posterior temporal sulcus 
(pSTS) is crucial for recognition of biological motion [7], 
actions [8], and emotional expressions [9,10]. These 
findings highlight the specific contributions of distinct 
portions of temporo-occipital areas to visual perception 
and provide valuable insights into the neural mechan-
isms underlying the processing of different stimulus 
categories. 

Building upon early interferential studies, further TMS 
techniques have been developed for examining the 
functional interactions between interconnected cortical 
areas, primarily in the motor system. These techniques, 
known as paired-pulse TMS, enable the investigation of 
time-resolved effective connectivity by delivering two 
TMS pulses at varying interstimulus intervals (ISIs) over 
two cortical areas using two coils [11–13], the underlying 
rationale that, if the two are functionally connected, the 
impact of the second pulse is modulated by the first 
pulse. 

In the motor system, the technique is implemented by 
delivering a test stimulus (TS) to the primary motor 
cortex (M1) to record motor-evoked potentials (MEPs) 
in peripheral muscles and assess motor excitability. To 
study the effective connectivity between M1 and a re-
mote functionally connected cortical site, in some trials, 
the TS is preceded by a conditioning stimulus (CS) 
delivered to the remote site through another coil. The 
strength of the connectivity can be measured by how    
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much the CS affects M1 excitability, as reflected in the 
amplitude of the MEPs evoked by M1 stimulation alone 
or paired-pulse stimulation. Critically, the timing of the 
connectivity can be precisely mapped by systematically 
probing the ISI between the CS and TS at several dif-
ferent values [11,14–16]. The same ppTMS approach 
has been applied to the visual system, too, delivering the 
TS over V1 paired with CS over V5 and examining the 
modulation of moving phosphene perception depending 
on the ISI between TS and CS, to establishing the 
timing of effective V5–V1 connectivity [17,18]. 

Stemming from this instrumental knowledge on the 
timing of effective connectivity in select pathways that 
can be exogenously stimulated through TMS, it is pos-
sible to act on plastic mechanisms both to strengthen 
and weaken the influence that one area has on the other 
by repeatedly applying pairs of TMS pulses [19–23]. 

Such a procedure is referred to as cortico-cortical paired- 
associative stimulation (ccPAS) [21,24–28] and has been 
first developed by Rizzo and colleagues [29]. Crucially, 
the effectiveness of ccPAS in inducing long-lasting 
plastic changes is contingent on the precise timing of the 
TMS pulses, pointing to the involvement of an under-
lying Hebbian-like mechanism. According to the Heb-
bian rule [30], synapses are potentiated when 
presynaptic neurons repeatedly and consistently fire 
immediately before postsynaptic neurons. The ccPAS 
protocol exogenously mimics this principle by activating 
pre- and postsynaptic neurons with a temporally precise 
pattern to induce Hebbian-like spike-timing-dependent 
plasticity (STDP) [30,31]. For example, Buch and col-
leagues demonstrated that ccPAS applied over the 
ventral premotor cortex (PMv) and M1, with an 8-ms 
ISI, tailored to the temporal properties of the PMv-to- 
M1 pathway revealed by ppTMS studies [32,33], in-
creases the conditioning effect exerted by PMv over M1. 
Specifically, the authors showed that the application of 
the first pulse of TMS on PMv (regarded as the ‘pre-
synaptic’ node according to the Hebbian rule) may pre- 
activate via cortico-cortical connections, M1 (the ‘post-
synaptic’ node) shortly before the application of the 
second pulse on M1. This pre- and postsynaptic activa-
tion coupling is optimal for inducing STDP, increasing 
synaptic plasticity and connectivity in the pathway be-
tween the premotor and motor regions. 

These findings demonstrated that ccPAS can increase 
the synaptic efficacy of cortical projections from the first 
to the second targeted area, showing long-term po-
tentiation (LTP)-like effects [34,35]. Moreover, by 

reversing the order of the stimulation pairs, a connection 
weakening can be achieved, resulting in long-term de-
pression (LTD) [34,36]. Subsequent studies have com-
bined ccPAS with imaging and/or electrophysiological 
techniques to elucidate the timing of insurgence of 
plastic effects during protocol administration [36], pro-
vide network-level evidence of anatomically specific 
increased cortico-cortical functional coupling [22,37–39], 
clarify the engagement of specific excitatory and in-
hibitory intracortical networks [40,41], and demonstrate 
functionally specific behavioral effects [42–44]. Although 
these Hebbian-like plasticity chances were first docu-
mented in the motor control network, changes in cortico- 
cortical plasticity with ccPAS are also extensively ob-
served in the visual network. In this short review, we 
will summarize and comment on the body of work 
dedicated to examining the cortico-cortical connections 
supporting visual perception and how they relate to the 
visual perceptual abilities that they underpin. 

In the figure, we have offered a graphical overview of the 
key visual networks explored through the ccPAS pro-
tocol to date. These networks involve a complex inter-
play within the visual cortex, revealing a dynamic 
process crucial for visual information processing. 
Notably, the V5–V1 network plays a pivotal role in in-
tegrative visual functions essential for motion awareness. 
Specifically, suppressing V5 weakens V1 responses to 
moving bar stimuli, and subthreshold TMS stimulation 
on V5 can elicit moving phosphenes when suprathres-
hold V1 stimulation follows, suggesting a top-down 
amplification mechanism in visual motion processing 
subserved by V5-to-V1 network [17,18]. Moreover, mo-
tion awareness is also critically linked to the interplay of 
the horizontal interaction between the homologous V5 
areas in both hemispheres via callosal connections. This 
connection is noteworthy, as the strength of connectivity 
in the V5–V5 pathway is directly correlated with 
heightened horizontal motion sensitivity [45]. Advancing 
to higher-order areas, the intraparietal sulcus (IPS) plays 
a pivotal role in perceptual decision-making [46] and 
decisional confidence [47,48]. Importantly, ample evi-
dence suggests a close anatomo-functional relationship 
between IPS and occipital regions [50], contributing to 
the top-down regulation of primary visual areas through 
the feedback information flow it provides [51]. Finally, 
the superior temporal sulcus (STS)–V1 network stands 
out for its involvement in social perception and biolo-
gical motion processing. STS plays a crucial role in re-
cognizing facial expressions, processing biological 
motion cues, and extracting socially relevant information 
from visual stimuli. Face-selective neurons of pSTS 
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receive projections directly from the periphery of V1/V2, 
and in turn, pSTS sends direct and indirect back-pro-
jections to V1/V2. Consistent with these reciprocal con-
nections, pSTS and V1/V2 exhibit intrinsic functional 
connectivity at rest, predicting interindividual differ-
ences in emotion recognition accuracy. 

Investigating plasticity in visual networks 
through cortico-cortical paired-associative 
stimulation 
Recent research has extended ccPAS applications to 
investigate the plasticity of cortico-cortical visual net-
works (Figure 1). The first notable application, con-
ducted by Romei et al. [21], explored the plasticity of 
the left V5–V1 network and its role in visual motion 
discrimination. The study demonstrated that the ccPAS 
protocol specifically designed to strengthen the re-
entrant left V5-to-V1 pathway led to significant im-
provements in motion discrimination when the 
directionality and timing of the ccPAS protocol aligned 
with the temporal properties of the stimulated pathway. 
The observed effects showed a long-lasting temporal 
unfolding, resembling Hebbian-like physiological 
changes obtained in previous studies on the motor 
system. Conversely, no net modulation in motion dis-
crimination performance was achieved when the TMS 
protocol did not closely mimic the intrinsic spatio-
temporal dynamics of the stimulated network. 

In addition to complying with the temporal rules gov-
erning the interaction within the circuits, the expression 
of plastic mechanisms could also be influenced by the 
network’s activation state. For instance, it is well-re-
cognized that the effect of NIBS can be potentiated or 
attenuated based on the prevailing level of neural ex-
citation at the site of application [51,52]. In light of this 
principle, Chiappini et al. [53] evaluated whether the 
effect of ccPAS on the left V5–V1 pathway could be 
influenced by the current state of excitation of the sti-
mulated brain network. The researchers demonstrated 
that when ccPAS pulses were delivered during the 
concurrent presentation of a specific motion direction, 
motion sensitivity increased only for that specific motion 
direction. This finding highlights the potential for state- 
dependent ccPAS to facilitate precise targeting of spe-
cific functional circuits within overlapping pathways, 
thereby enhancing the spatial and functional specificity 
of ccPAS. 

Collectively, these findings have linked the V5–V1 
network to establishing the precision with which mo-
tion-based information is sampled. Recently, this picture 
has been further expanded by a study conducted by Di 
Luzio et al. [54] that revealed the causal involvement of 

the left IPS–V1 network in determining the accuracy of 
metacognitive judgments on perceptual decisions. Spe-
cifically, the ccPAS protocol targeting the reentrant 
connections from left IPS to V1 selectively influenced 
metacognitive capacity, enabling participants to exhibit 
greater precision in estimating the correctness of their 
choices without affecting the actual accuracy of percep-
tual decision-making. On the other hand, while left V5- 
to-V1 ccPAS resulted in improvements in perceptual 
performance, it did not yield any changes in the parti-
cipants’ metacognitive judgments. 

In summary, these ccPAS studies provide valuable in-
sights into the role of different cortico-cortical connec-
tions within the visual network, shedding light on the 
selective modulation of perceptual sensitivity by V5-to- 
V1 back-projections and metacognitive efficiency by 
IPS-to-V1 back-projections. These findings support the 
existence of distinct and hierarchical networks that 
govern human perceptual decision-making processes. 

However, the hierarchical organization of the perceptual 
domain encompasses not only vertical chains that ascend 
the visual system in a sequential manner (bottom-up and 
top-down) but also involves horizontal pathways that 
emerge through the interaction between homologous 
areas of the two hemispheres via callosal connections. A 
recent ccPAS study by Chiappini, Sel et al. [55] has 
characterized these horizontal interactions, revealing 
functional dissociations between interhemispheric net-
works. Using an optimized ccPAS protocol, the authors 
specifically enhanced the connectivity between the V5 
regions of the left and right hemispheres in a series of 

Figure 1  
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Overview of the functional role of visual networks investigated with 
ccPAS.   
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five consecutive experiments. The results demonstrated 
a functional dissociation, as reinforcing the left-to-right 
V5 pathway heightened sensitivity to horizontal visual 
motion, while strengthening the right-to-left V5 pathway 
did not produce the same effect. These findings provide 
compelling evidence supporting the functional re-
levance and asymmetrical plasticity of interhemispheric 
projections between the left and right V5 regions to 
horizontal motion perception. It is worth emphasizing 
that this conceptual progress made possible by ccPAS, 
which allowed researchers to disentangle the dissociable 
functional role of V5–V1 and IPS–V1 reentrant projec-
tions and highlight the functional asymmetries observed 
in interhemispheric interactions, would have presented 
challenges to dissect with comparable precision using 
conventional neurostimulation approaches. 

Finally, in a recent study conducted by Borgomaneri 
et al. [56], the researchers aimed to enhance the visual 
perception of facial expressions by targeting long-range 
projections between right pSTS and V1. They combined 
TMS and electroencephalography (EEG) to track signal 
propagation from right pSTS to V1, estimate its timing, 
and inform a subsequent pSTS–V1 ccPAS: single-pulse 
TMS was initially delivered over the right pSTS, and 
the time-course of TMS-evoked responses within V1 
was recorded. STS stimulation induced a maximal EEG 
peak over V1 ∼200 ms after the pulse, consistent with 
the recruitment of long-range and polysynaptic reentrant 
temporo-occipital connections. This information was 
then used to calibrate a ccPAS of the two regions, with 
the hypothesis that reinforcing communication from 
pSTS to V1 would improve the recognition of emotional 
facial expressions. The study’s results demonstrated that 
right pSTS-to-V1 ccPAS improved the ability to re-
cognize emotions from facial stimuli, leaving gender 
perception unaffected, accompanied by increased EEG 
activity in both pSTS and V1. These findings highlight 
the potential of ccPAS not only to modulate the per-
ception of simple motion stimuli but also to influence 
the processing of complex and biologically relevant sti-
muli, such as emotional faces, which are typically asso-
ciated with the ventral visual system. 

Future directions and clinical implications 
Further research efforts are needed to explore the full 
potential of ccPAS in investigating the plasticity of cor-
tico-cortical networks. One of the main objectives for 
future studies is to further integrate ccPAS with neu-
roimaging techniques [22,25,26,35,39] to gain a me-
chanistic understanding of the impact exerted by 
cortico-cortical plasticity on human behavior. In line 
with this objective, a recent study [57] has investigated 
the neural correlates of the improvement in motion 
discrimination tasks following V5-to-V1 ccPAS. The re-
search revealed that the enhancement in motion 

direction discrimination was linked to increased effec-
tive top-down connectivity from V5 to V1 in the alpha 
band. Moreover, Borgomaneri et al. [56] demonstrated 
that improved emotion perception following pSTS–V1 
ccPAS was paralleled by an increase in the temporo-oc-
cipital activity induced by facial stimuli, with maximal 
effects over V1, suggesting increased top-down mod-
ulation from pSTS to V1. These findings provide proof- 
of-principle evidence that ccPAS can effectively mod-
ulate the strength of top-down reentrant visual networks, 
with corresponding cascading effects on the behavioral 
output of visual circuits, and contribute to our under-
standing of the neurophysiological rules governing net-
work dynamics. This comprehension is crucial for fine- 
tuning ccPAS protocols and maximizing the effective-
ness of the interventions. 

To this endeavor, future information-based ccPAS ap-
proaches should take into consideration spatiotemporal 
properties of the targeted network as gathered from 
EEG signals such as TMS-evoked potentials (TEP) [56] 
or the rhythmic nature of the interactions between cer-
ebral networks (Figure 2) [39,58]. Consequently, pro-
spective research could focus on developing 
information-based approaches [47], such as TEP-based 
or rhythmic-based ccPAS protocols, by adjusting the 
delay between the two TMS pulses to correspond to a 
specific TEP component or in order to accurately mimic 
the intrinsic rhythmic interaction that occurs in cortico- 
cortical interactions. 

These innovative approaches are currently being im-
plemented in our labs, where we are exploring the in-
triguing possibility of tailoring ccPAS protocols to 
specific EEG frequencies to selectively enhance brain 
connectivity in specific brain networks. In this regard, 
mounting evidence suggests that different frequency 
features and bands are implicated in distinct cognitive 
functions [47–51,59–62], further supporting the notion 
that frequency-specific strengthening of the same net-
work may elicit diverse behavioral outcomes with sig-
nificant implications. Among these, information-based 
ccPAS protocols may yield substantial advances in the 
current understanding of how the ccPAS operates, 
helping to disentangle the complexity and variability of 
the results currently available. The growing interest in 
paired-associative stimulation protocols has resulted in 
an increase in publications on the topic [63], revealing 
both the remarkable efficacy of this tool and, on the 
other, thought-provoking discrepancies in findings 
whose root causes are yet to be defined [64]. In pursuit 
of this, the use of information-based ccPAS methods, 
along with their application in animal models to study 
how the ccPAS activates STDP, could prove pivotal, 
advocating for further studies to enhance our compre-
hension of ccPAS mechanisms and contribute to the 
resolution of existing discrepancies. 
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Understanding the plasticity of cortico-cortical networks 
through ccPAS has also significant translational implica-
tions. Initial steps in this direction have explored the 
impact of ccPAS on psychiatric [65,66] as well as neu-
rological [67] populations. These seminal works indicate 
that ccPAS could pave the way for targeted interventions 
in clinical conditions characterized by motor [68] or vi-
suospatial deficits [69], such as hemianopia, neglect, or 
agnosia. Furthermore, several symptoms observed in 
psychiatric populations, such as autism and schizo-
phrenia spectrum disorders, often visual in nature, could 
stem from imbalanced connections between cerebral 
hubs [70–73], and cortical imbalance can characterize 
several other conditions, including migraine [74]. 
Therefore, both established and novel information- 
based ccPAS protocols may serve as promising candi-
dates for potential therapeutic interventions, as they 
could provide highly specific and individually tailored 
approaches to modulate neural connectivity. 
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Figure 2  
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Prospective EEG-informed ccPAS protocols in the visual system. Information-based ccPAS approaches take into consideration the spatiotemporal 
properties of the targeted network. This information can be obtained from EEG/magnetoencephalography (MEG) signals in combination with TMS or 
as standalone techniques, which can trace the interaction between brain regions with high temporal resolution. As a result, research in this field is 
currently focused on two main prospective directions: i) TEP-based ccPAS protocols that involve adjusting the delay between the two TMS pulses 
corresponding to a specific TEP component. This precise targeting of EEG-derived components can potentially enhance cortico-cortical plasticity 
more effectively. II) Rhythmic-based ccPAS protocols that tailor the delay between TMS pulses to mimic the intrinsic rhythmic interactions observed in 
cortico-cortical circuits accurately. By aligning with these natural rhythms, the protocol can facilitate the expression of plasticity in a frequency-specific 
manner. Overall, by exploring and fine-tuning these approaches, researchers can unlock the full potential of ccPAS to modulate neuroplasticity.   
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