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21.1  Introduction

The interest in using transcranial direct current stimulation (tDCS) as a complemen-
tary or alternative tool for the treatment of neurological and psychiatric disorders 
has been significantly growing since the last decade, as shown by the exponential 
increase of scientific publications in the field (see [1], for an overview). One key 
factor for the interest in this noninvasive brain stimulation technique refers to its 
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potential to modulate neural activity by acting on synaptic plasticity (e.g., [2]), 
which is supposed to be abnormal in several brain disorders [2–4]. tDCS has indeed 
been shown to induce long-term potentiation (LTP) and long-term depression 
(LTD)–like plasticity in humans (e.g., [5–8]). In line with these premises, therapeu-
tic effects of tDCS have been shown in numerous clinical disorders of the central 
nervous system in both adult and pediatric populations. For recent reviews in the 
field, see [9–14].

In the current chapter, we provide an updated overview on the therapeutic effects 
of tDCS for the treatment of anxiety disorders in adult populations according to the 
Diagnostic and Statistical Manual of Mental Disorders (DSM-5) classification of 
anxiety disorders [15]. In particular, we aim to examine the currently available lit-
erature on the effects of tDCS for the treatment of specific phobias (SP), social anxi-
ety disorder (SAD), panic disorder (PD), agoraphobia, and generalized anxiety 
disorder (GAD).

According to recent suggestions (e.g., [16]), one important pathological mecha-
nism in anxiety disorders is maladaptive neuroplasticity. Evidence for altered neu-
roplasticity is shown by studies documenting hypoactivation of the left dorsolateral 
prefrontal cortex (DLPFC) (e.g., [17, 18]) and hyperactivation of the right DLPFC 
in anxiety [19]. In line with these premises, tDCS might represent a useful tool to 
counteract respective patterns of maladaptive neuroplasticity by modulating patho-
logical hypo/hyperactivation of the DLPFC in respective clinical populations. 
Moreover, the link between prefrontal regions and subcortical regions involved in 
threat and fear processing (e.g., amygdala) is another rationale for targeting anxiety 
through modulation of the DLPFC with tDCS [20]. In fact, functional abnormalities 
of the amygdala, the key neural region of the “fear circuit,” have been documented 
in several anxiety disorders (see [21] for a review).

Since an extended overview of the neurophysiological foundation and mecha-
nisms of action of tDCS is presented in this book, we are here only providing a brief 
introduction dedicated to this topic. For a more exhaustive/detailed overview, please 
see also the following recent reviews in the field (e.g., [8, 22–24]).

21.2  Mechanisms of Action of tDCS

tDCS is a well-established noninvasive brain stimulation tool that allows to stimu-
late the cerebral cortex via two or more electrodes with opposite polarities (i.e., 
anodal and cathodal) placed on the scalp and connected with a battery-driven con-
stant current stimulator with a maximum output in the milliampere (mA) range [14]. 
A relatively weak electrical direct current (usually 1–2 mA) is applied via the elec-
trodes, and a proportion of it enters the brain [6, 7, 25–28]. As a general principle, 
increases of cortical excitability have been documented during and after stimulation 
with the anode over the target area. On the other hand, a decreased cortical excit-
ability was found to follow stimulation with the cathode over the respective region 
[8]. A single stimulation session of up to 15-minutes duration affects cortical excit-
ability for up to 90 minutes [7, 26, 29], and this effect can be further extended by 
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repeated stimulation (i.e., cumulative effects) [5]. The prolonged effects of tDCS on 
cortical excitability are linked to mechanisms of synaptic modulation, as suggested 
by pharmacological studies in humans [30] and animal models [2, 3]. Evidence sug-
gests that tDCS induces plasticity of glutamatergic synapses, which is calcium 
dependent. tDCS after-effects (both anodal and cathodal) are prevented by NMDA 
receptor block but enhanced by respective receptor agonists [6, 7, 31, 32]. Moreover, 
GABAergic activity is reduced by both anodal and cathodal tDCS [33], and this 
reduction might serve as a gating mechanism for tDCS-induced plasticity. Because 
of calcium dynamics involved in glutamatergic plasticity, nonlinear effects are 
observed if stimulation intensity and duration extend beyond specific limits. Low 
calcium enhancement of the postsynaptic neuron induces long-term depression 
(LTD), whereas high concentration is involved in long-term potentiation (LTP)  
[34]. Extending calcium concentration further activates counter-regulatory mecha-
nisms antagonizing calcium influx, and reduces or converts plasticity induction 
[35]. This explains why enhancing the stimulation intensity of cathodal tDCS from 
1 to 2 mA converts LTD- into LTP-like plasticity [36, 37, 38], and why extending 
stimulation duration of anodal tDCS from 13 to 26  minutes results in LTD-like 
plasticity [5].

21.3  Overview of the Available tDCS Studies 
in Anxiety Disorders

Before reporting the effects of tDCS on anxiety disorders based on the DSM-5 clas-
sification, we start with a focus on the efficacy of this technique to modulate trait 
anxiety, which is a common aspect of all anxiety disorders [39, 40]. Ironside and 
coworkers [20] examined the effects of tDCS over the prefrontal cortex (PFC) on 
the behavioral response to a threatening stimulus (i.e., participants were required to 
perform an attentional task requiring them to ignore threatening face distractors) in 
individuals with trait anxiety. Additionally, threat-related activation of the amyg-
dala, which is crucially involved in fear generation, was obtained by functional 
magnetic resonance imaging (fMRI). In this double-blind, within-subject, random-
ized clinical trial, eighteen women with high trait anxiety (age mean = 23.1; age 
range, 18–42 years) were included. High trait anxiety was defined as scoring higher 
than 45 on the Spielberger State-Trait Anxiety Inventory (STAI), which measures 
the severity of current symptoms of anxiety and a generalized propensity to be anx-
ious [41]. Trait anxiety was further confirmed using the Structured Clinical Interview 
for DSM-IV disorders. Following a counterbalanced order, active vs. sham tDCS 
was applied over the left and right DLPFC (i.e., anodal left / cathodal right DLPFC; 
more details in Table  21.1), in two single sessions, separate by one month. 
Immediately after (roughly 7 minutes) the end of tDCS, participants began an fMRI 
emotional task with fearful or neutral facial expressions, in order to study amygdala 
activation during performance of attentional control over fearful stimuli. The results 
showed a reduced influence of threat distractors on task accuracy following 
tDCS. Active tDCS compared to sham improved performance accuracy under low 
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attentional load by reducing vigilance to threat. Importantly, this behavioral 
improvement was accompanied by reduced amygdala activation and increased cor-
tical activation (of the frontal and parietal regions) in response to fearful face dis-
tractors under tDCS.  This study is an excellent example for the exploration of 
neurocognitive mechanisms of tDCS on fear processing. It delivers not only infor-
mation about the alteration of psychological processes via this intervention, but it 
also suggests moreover respective physiological mechanisms, including activity 
reduction of the amygdala, which is relevant for fear induction, by altered dorsolat-
eral prefrontal activity generated by tDCS.

21.3.1  tDCS for the Treatment of Panic Disorder (PD)

PD is classified as an anxiety disorder characterized by recurrent panic attacks with 
several symptoms such as palpitation, sweating, shaking, nausea, dizziness, dereal-
ization, and depersonalization [15]. This disorder is characterized by an alteration 
of the activity of key frontal and limbic areas, such as the medial prefrontal cortex 
and the amygdala [48]. Recent imaging studies have documented alterations of an 
even more extended brain network (e.g., [49]), including sensory regions of the 
occipital, parietal, and temporal cortices and the insula [48].

For the treatment of PD with tDCS, to date, only a case study performed by 
Shiozawa et al. [43] is available. In this study, a middle-aged woman was treated 
with ten stimulation sessions (once daily, five sessions per week, for 2 weeks) of 
cathodal (2  mA) stimulation over the right DLPFC (for more details, refer to 
Table 21.1). The Hamilton Anxiety Scale (HAS) showed a significant reduction of 
anxiety symptoms, as compared to baseline scores. Moreover, this pattern remained 
stable at the 30 days’ follow-up. Although promising, the results shown in this sin-
gle case report are too preliminary to make any firm conclusion about the therapeu-
tic effectiveness of tDCS for the treatment of PD. Further investigations adopting a 
double-blind/sham-controlled design are recommended.

21.3.2  tDCS for the Treatment of Social Anxiety Disorder (SAD)

SAD is characterized by marked fear, anxiety, or avoidance of social interactions, 
including situations in which one is scrutinized, or situations in which one is the 
focus of the attention [15]. Functional and structural alterations of several neural 
regions, including the fusiform gyrus, thalamus, amygdala, insula, anterior cingu-
late cortex (ACC), as well as the striatum and DLPFC [50] have been identified to 
be involved in this disorder. This indicates that SAD, beyond the involvement of 
core regions relevant for fear and anxiety, is characterized by pathological altera-
tions in a number of additional regions involved in sensory processing and atten-
tional control [50].

Heeren et  al. [42] performed a double-blind within-subject protocol in young 
female individuals with a DSM-5 diagnosis of SAD. Participants received a single 
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session of anodal (2  mA) or sham tDCS over the left DLPFC (more details are 
reported in Table 21.1) during conduction of a probe discrimination task assessing 
Attentional Bias (AB). This task was chosen due to evidence that SAD is associated 
with and maintained by AB for social threat [42]. The results document a significant 
decrease in AB for threat during anodal tDCS over the left DLPFC as compared to 
the respective sham stimulation condition. As for PD, the extremely limited litera-
ture in the field does not allow to derive clear conclusions about the therapeutic 
effectiveness of tDCS for the treatment of SAD. Moreover, the only currently avail-
able study [42] provides only indirect evidence for some potential of tDCS for the 
treatment of SAD, as the authors did not include standard clinical measures aiming 
to compare SAD symptom severity before and after treatment, but used a surrogate 
marker. Also here, further investigations adopting a double-blind/sham-controlled 
design are recommended.

21.3.3  tDCS for the Treatment of Generalized Anxiety 
Disorder (GAD)

Patients affected by GAD are characterized by persistent and excessive worries 
about a number of different things such as work, family, or money [15]. In terms of 
pathologically altered neural activation patterns/-rostral anterior cingulate cortex 
(sg/rACC) and medial prefrontal cortex (mPFC) has been described consistently, 
while activity alterations of the amygdala and the hippocampus seem to be more 
variable in GAD [50].

Shiozawa et al. [44] performed the first tDCS single case study in a middle-aged 
woman affected by GAD. The authors performed 15 consecutive once-daily cath-
odal tDCS sessions (except for the weekends) over the right DLPFC (more details 
are reported in Table 21.1); the anode was placed extracephalically over the contra-
lateral deltoid muscle. Stimulation intensity was 2.0 mA. Anxiety symptoms mea-
sured via the HAS and Beck Anxiety Inventory (BAI) significantly improved after 
15 days of treatment. This improvement remained stable at follow-ups after 30 and 
45 days.

More recently [45], a total of 18 patients affected by GAD (46% females and 
64% males) were randomly assigned either to (2 mA) cathodal tDCS (n = 6) over 
the right DLPFC (more details are reported in Table 21.1), pharmacotherapy (n = 6), 
or sham stimulation (n = 6) in a sham-controlled, double-blind parallel-group study. 
Symptoms were measured via the HAS.  The intervention resulted in significant 
improvements of the anxiety index in the tDCS and pharmacotherapy groups, as 
compared to the sham group. The difference between the active intervention meth-
ods was not significant.

Finally, Lin et al. [46] conducted a randomized, placebo-controlled, single-blind 
study in which the effect of cathodal tDCS over the right DLPFC (with the reference 
electrode over the contralateral mastoid) was investigated in 20 patients diagnosed 
with GAD. The patients of the real stimulation group (n = 10) received 10 days of 
stimulation with a current intensity of 2 mA, for 20 min per day. The Hamilton Rating 
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Scales for Anxiety (HAMA) and depression (HAMD) were evaluated at baseline, 2 
weeks, 4 weeks, and 8 weeks after the beginning of treatment. They found a signifi-
cant improvement of the HAMA scores in the real stimulation group 2, 4, and 8 weeks 
after the start of the treatment, while no symptom improvement was reported in the 
group that received sham tDCS. In summary, the available study results suggest the 
right DLPFC as a potential target for the treatment of GAD via cathodal tDCS. The 
currently available literature in the field is however limited and does not allow to make 
exhaustive conclusions about the therapeutic efficacy of this stimulation protocol for 
the treatment of GAD. Nevertheless, compared to tDCS treatment of PD and SAD, 
the results provided by Movahed et al. [45] and Lin et al. [46] deliver more definite 
support for the therapeutic effectiveness of right DLPFC tDCS for the treatment of 
anxiety disorders, as the authors tested two relatively medium-sized samples (N = 18, 
N = 20 respectively), and the respective study designs were blinded. Further investiga-
tion adopting double-blind/sham-controlled designs is recommended in this regard. 
Reasonable next steps to enhance the efficacy of the intervention will also include the 
implementation of mechanistic studies that focus on optimizing approaches (addi-
tional stimulation areas, network stimulation, optimization of duration/intensity), and 
to embrace a larger multicenter perspective.

21.3.4  tDCS for the Treatment of Agoraphobia

Agoraphobia is an anxiety disorder characterized by marked fear or anxiety of situ-
ations such as public transportation, open or enclosed spaces [15]. Neuroimaging 
research [51] has pointed out an increased activation of the insula and the ventral 
striatum in patients affected by agoraphobia, compared with healthy controls, dur-
ing anticipation of agoraphobia-specific stimuli. No studies testing the effects of 
tDCS for the treatment of agoraphobic patients have been performed so far.

21.3.5  tDCS for the Treatment of Specific Phobias (SP)

SP refers to a clinical condition characterized by marked fear, anxiety or avoidance 
of specific circumstances/situations, such as animals, environments, and others 
[15]. Results from neuroimaging studies suggest that SP is characterized by an 
enhanced activation in the insula, DLPFC ACC, amygdala, and prefrontal/orbito-
frontal cortices during the processing of phobia-related situations compared to con-
trols [52].

Palm et al. [53] have recently performed the first open-label pilot tDCS study on 
8 adult patients affected by phobic postural vertigo (PPV) to modulate disease- 
related symptoms (vertigo/dizziness). A 2 mA anodal tDCS was applied over the 
left DLPFC (more details are reported in Table 21.1), once per day for 5 consecutive 
days. For the assessment of symptoms, the authors used the Vertigo Symptom Scale 
(VSS) [54], Dizziness Handicap Inventory (DHI) [55], and the Hospital Anxiety 
and Depression Scale (HADS) [56]. Overall, the results showed a significant 
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reduction of DHI scores. Moreover, anxiety and depression ratings were reported to 
be moderately improved, however, not significantly. In summary, as the previous 
anxiety disorders examined in this chapter, the limited literature in the field does not 
allow to derive firm conclusions about the therapeutic effectiveness of tDCS for the 
treatment of SP.  Further investigations adopting a double-blind/sham-controlled 
design, as well as extended stimulation protocols, as conducted for other anxiety 
disorders (see earlier), are recommended.

21.4  Discussion and Future Directions

In this chapter, we provided an overview of all published studies (N = 6) investigating 
the therapeutic effectiveness of tDCS for the treatment of anxiety disorders. Moreover, 
we have included a recent study testing the effects of tDCS on trait anxiety [20], 
which is relevant for all anxiety disorders. Overall, the research examined in this chap-
ter provides preliminary evidence in support of the hypothesis that tDCS is a promis-
ing therapeutic approach for the treatment of anxiety disorders. However, the 
extremely limited number of investigations (a total of seven studies, with no research 
in agoraphobia performed so far), the absence of double-blind/sham- controlled proto-
cols in 4 out of 6 studies performed in anxiety disorders, and the low number of 
patients in several studies (3 of 7 studies are single case studies) show serious limita-
tions of the current state of research in the field. DLPFC is the major cortical target in 
the treatment of anxiety disorders via noninvasive brain stimulation, although other 
cortical targets might represent valid alternatives according to the available physiolog-
ical literature in the field (see [14] for a review). For instance, in the 57% of the exam-
ined studies (4 on 7), the authors chose the right DLPFC as a target with cathodal 
tDCS to treat anxiety disorders, while 28% of the studies (2 on 7) conducted anodal 
tDCS over the left DLPFC (n = 2); bilateral stimulation over the DLPFC (i.e., anodal 
left / cathodal right DLPFC) was conducted in one study. Since benefits were reported 
in response to all types of protocols, it might be concluded that all of these approaches 
are effective. This pattern of results is in line with a model proposed in a recent sys-
tematic review of our group [14], where we suggested that the stimulation of both the 
left and right DLPFC with anodal and cathodal tDCS, respectively, might counteract 
maladaptive plasticity of the cortico-meso-limbic network [57] in anxiety disorders, 
by acting on the up/downregulation mechanisms subserved by these regions for emo-
tional outcomes [14]. In particular, according to this model, benefits from excitatory 
stimulation of the left DLPFC would be due to the relevance of this region for down-
regulation of negative emotion (e.g., [58]), and upregulation of positive emotion (e.g., 
[4, 59]). On the other hand, benefits from inhibitory stimulation over the right DLPFC 
would be determined from the relevance of this region for downregulation of reactions 
to negative emotional stimuli/outcomes, in line with evidence that this region is 
involved in the upregulation of reactions to negative emotional outcomes [60].

The relevance of prefrontal regions, especially the DLPFC, in anxiety disorders 
can be discussed at least from two perspectives. The first perspective includes the 
involvement of the DLPFC in cognitive control of behavior and emotion [61]. 
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“Attentional control” and “cognitive change” are two major types of cognitive regula-
tion of emotions that depend on PFC activity [61]. These regulatory strategies modu-
late both bottom-up and top-down responses to emotional stimuli, which construct 
expectations for, select alternative interpretations of, and/or make different judgments 
about emotional stimuli, including fearful objects and threats. This has been the ratio-
nale behind recent tDCS studies that aimed to improve emotion regulation through 
enhancing cognitive control functions in emotional disorders (e.g., [62, 63]).

The second perspective regards, more specifically, the functional connectivity 
between prefrontal cortical regions and subcortical areas, which allows modulation 
of threat- related structures (e.g., the amygdala) [20]. While direct modulation of the 
activity of subcortical regions is not as feasible as modulation of cortical regions by 
noninvasive brain stimulation techniques, due to effects of regional stimulation on 
cerebral networks, including subcortical structures [64], it is possible to target sub-
cortical areas indirectly by cortical stimulation. Indeed, evidence from stimulation 
of the DLPFC and motor areas suggests that tDCS can alter activation and connec-
tivity in regions distant from the electrodes [64, 65].

In the context of research exploring the relevance of the prefrontal cortex as a 
neural target for the treatment of anxiety disorders via tDCS, it might be relevant to 
extend respective investigation to the ventro-medial PFC (vmPFC), whose relevance 
for the treatment of anxiety disorders has been explored only with transcranial mag-
netic stimulation (rTMS) so far [66]. The vmPFC is reciprocally connected with the 
amygdala, which is known to be dysfunctional in anxiety disorders [50, 67]. It has 
moreover been shown to be directly involved in downregulation of negative affec-
tive responses [68], and upregulation of positive (rewarding) outcomes [69], which 
makes it an interesting target for anxiety modulation. In the same line, stimulation 
of additional areas, which have been shown to be involved in specific syndromes, 
might be of interest in future studies. This might also include network stimulation 
approaches.

Lastly, while in this chapter we only included the application of tDCS in anxiety 
disorders according to the DSM 5 diagnostic criteria, some tDCS studies are avail-
able for effects in post-traumatic stress disorder (PTSD) and obsessive–compulsive 
disorder (OCD). The results from these parallel research fields further enrich the 
picture on the effects of tDCS in the treatment of anxiety and anxiety-related disor-
ders (e.g., [70–72]). For example, van’t Wout-Frank et al. [72] observed a signifi-
cant reduction of arousal (i.e., reduced skin conductance response) and a clinically 
meaningful reduction of symptom severity in PTSD in response to tDCS over 
the vmPFC.

21.4.1  Maximizing Clinical Efficacy

The research discussed here so far refers to pilot studies that were primarily designed 
to examine the principal efficacy of tDCS in anxiety disorders, aimed to determine 
whether conducting further research in the field would be promising. Most of the 
studies were not designed to optimize tDCS efficacy and draw definite conclusions 
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about the implementation of tDCS for clinical treatment of anxiety disorders. Based 
on the principally promising results of these pilot studies, the next step would be to 
design studies for optimizing the stimulation protocols in order to maximize clinical 
efficacy. In this prospective, future studies are recommended to consider optimiza-
tion approaches, which we will briefly discuss here. These approaches include: [15] 
optimizing stimulation parameters (i.e., stimulation area, polarity, intensity, dura-
tion, repetition, etc.) and [47] combining tDCS with other techniques.

Parameters of respective stimulation protocols play an important role in the effi-
cacy of tDCS and these should be considered and systematically investigated in 
future studies. The first important parameter is the stimulation target area, which 
was already briefly discussed in the previous section. Right DLPFC (4 of 7 studies) 
and left DLPFC (3 of 7 studies) were the only targeted regions in the discussed stud-
ies, which are in line with the suggested up/downregulation model of anxiety disor-
ders [14]. Yet, further studies are required to systematically investigate the effects of 
unilateral / bilateral stimulation of both right and DLPFC regions, which might 
enhance efficacy of interventions. Furthermore, other target areas might be attrac-
tive candidates. The medial PFC, including the VMPFC, is a potentially important 
region in regulating emotions and anxiety, but also other areas, as discussed earlier, 
might be relevant. Another important stimulation parameter is stimulation polarity, 
which is closely associated with the intended LTP- or LTD-like effects of the target 
area [6, 7, 26]. In the studies conducted so far, the right DLPFC received cathodal 
stimulation to reduce excitability, and the left DLPFC anodal stimulation to enhance 
excitability. The underlying rationale is to counteract respective pathological activ-
ity reductions of the left, and enhancements of the right DLPFC, which have been 
identified in anxiety disorders, and share similarities with respective alterations in 
depression [73].

In addition to tDCS montage (e.g., stimulation area and polarity, and also elec-
trode size), stimulation intensity, duration, and repetition rate contribute to the effi-
cacy of stimulation protocols. Findings from stimulation studies in other clinical 
fields (e.g., tinnitus [74], cognitive functions in Parkinson’s disease [75], schizo-
phrenia [76]) show that higher intensities of stimulation can result in more effective 
symptom improvement. However, the relationship between increased intensity and 
magnitude of the respective effects is not necessarily linear. It was recently shown 
that different intensities of anodal stimulation have similar effects on motor cortex 
plasticity at the group level [29], whereas the intensity-dependent effect of cathodal 
tDCS includes nonlinearities [36, 37, 77]. However, all of the above-mentionend 
studies were conducted with healthy adults. That said, the transferability of such 
nonlinear effects on clinical symptoms and cognitive/behavioral performance is not 
yet clear and needs further investigation. Due to pathologically altered cerebral 
activity in clinical syndromes, a one-to-one transferability might not be given, and 
thus titration studies in clinical populations are required to identify the optimal 
stimulation intensity in anxiety disorders .

Extension of the duration of stimulation sessions and repetitive stimulation are 
other factors to consider in order to improve the clinical efficacy of tDCS. tDCS 
studies on motor cortex excitability show that a longer duration of tDCS within a 

21 Transcranial Direct Current Stimulation (tDCS) in Anxiety Disorders



312

specific time frame is able to prolong induced plasticity in the human motor cortex 
[6, 7, 26, 78], and that repetition within specific intervals enhances efficacy [5]. 
However, similarly to what has been observed in terms of stimulation intensity, a 
nonlinear relation between stimulation duration, repetitive stimulation, and observed 
effects on cortical excitability should be taken into consideration [5, 36, 37]. Finally, 
repetition rate is another important parameter to consider in order to enhance clini-
cal efficacy of tDCS. Previous tDCS studies in clinical populations have shown that 
the efficacy of tDCS over motor and prefrontal regions is boosted by repeated ses-
sions of stimulation [79, 80]. Optimizing stimulation protocols in anxiety disorders 
by adapting these parameters might improve tDCS efficacy and provide a more 
realistic picture of its clinical potential. Considering that daily stimulation over 4–6 
weeks is required in order to achieve a clinically significant effects of rTMS in 
depression [81, 82], it might well be that most of the clinical tDCS studies con-
ducted so far are relevantly underpowered.

In addition to the stimulation parameters discussed here, it is important to dis-
cuss the combination of tDCS with other standard interventions in anxiety disorders 
as an additional optimizing strategy. Behavioral, cognitive, and psychological inter-
ventions are major treatment approaches in anxiety disorders, which can be com-
bined with tDCS to increase clinical efficacy. Previous studies showed sustained 
and longer symptom improvement following tDCS combined with cognitive train-
ing or psychological interventions in some neuropsychiatric disorders, including 
depression [47, 83, 84]. The respective sustained improvement of symptoms 
achieved by such combined therapies can be explained by fostering the formation of 
new memories induced by therapeutic approaches, which include relearning, 
enhancement of cognitive control [47], and other processes via tDCS-induced plas-
ticity enhancement. Moreover, the combination of tDCS with pharmacological 
interventions further boosts the neuroplastic effects of tDCS (for an overview, see 
[4, 30]), which might have clinical relevance [85, 86].

21.5  Conclusion

In summary, the current state of research suggests that tDCS might be an efficient 
tool for the treatment of anxiety disorders. However, the low number of high-quality 
investigations in this field does not allow to make definite conclusions. Future inves-
tigations should not only enhance the number of available studies but also take into 
account approaches that might qualitatively improve the field. These includes (1) 
double-blind, sham-controlled protocols with a relatively high number of partici-
pants; (2) systematic titration of stimulation parameters such as intensity, duration, 
repetition rate/intervals, and cortical targets for optimization; (3) combination of 
tDCS with standard therapies such as cognitive-behavioral therapy and/or pharma-
cotherapy; (4) combination of tDCS with physiological measures, such as func-
tional imaging, including fMRI, EEG, and vegetative parameters (e.g., heart rate 
and skin conductance), which provide important neurophysiological indices, in 
addition to the behavioral changes induced via tDCS [22]. Moreover, as suggested 

C. M. Vicario et al.

https://www.sciencedirect.com/topics/neuroscience/psychotherapy
https://www.sciencedirect.com/topics/psychology/physiological-measure
https://www.sciencedirect.com/topics/neuroscience/functional-imaging
https://www.sciencedirect.com/topics/neuroscience/functional-imaging
https://www.sciencedirect.com/topics/psychology/fmri
https://www.sciencedirect.com/topics/psychology/heart-rate


313

in our recent work [14], to specifically test the up/downregulation model mentioned 
earlier, the exposure to positive/negative emotional stimuli should be systematically 
included in future investigations in the field.
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