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Transcranial direct current stimulation over the tongue motor cortex N

reduces appetite in healthy humans

Obesity is a major concern in many societies for its impact on in-
dividual health and societal costs [1]. Therapeutic options however
are still limited with respect to efficacy and applicability. Food
impulsivity and hyperphagia play a key role in obesity [2] and are
associated with alterations of the activity of several brain structures
of the reward system, including orbitofrontal cortex (OFC) and
ventromedial prefrontal cortex (vmPFC), insula, anterior cingulate
cortex (ACC), and dopaminergic (DA) midbrain structures (e.g.,
[3,4]). Functional alterations of these brain areas are involved in
reward processing-related disorders, including eating disorders
(e.g., [5]).

Noninvasive brain stimulation provides an innovative tool for
treating hyperphagia with the advantage of modulating neural ac-
tivity in absence of surgical and/or pharmacological interventions,
which have often limited applicability due to obesity-associated
health complications.

Dorsolateral prefrontal cortex is the typical cortical target for
treating eating disorders, given its key role in up-/downregulation
of the reward circuitry [6] and inhibitory control functions [7]. Most
studies in the field describe short-term improvements [8,9]. How-
ever, no studies tackling alternative cortical targets more specif-
ically associated with the reward circuit are currently available.

Here, we tested whether downregulation of the tongue muscle-
representing area of the primary motor cortex (tnM1) via transcra-
nial direct current stimulation (tDCS) — a plasticity-inducing non-
invasive brain stimulation tool - reduces hunger in healthy humans.
This research hypothesis originates from the evidence that tnM1 is
directly connected with key regions of the reward system [10],
including OFC, ACC, insula, ventral putamen, caudate nucleus and
the amygdala. On the other hand, limb regions of the motor cortex
do not project to OFC or insular regions. Remarkably, we have docu-
mented that tnM1 excitability is modulated by nicotine craving [11],
distaste [12], and moral disgust [13], which supports a functional link
between tnM1 and reward-relevant processes in humans.

We applied 1 mA tDCS for 15 minutes over the tnM1 in twenty-
four food-deprived (fasting for 6h) healthy humans (mean age 29,
standard deviation 5.56, 15 females). Participants were recruited
by the Leibniz Research Centre for Working Environment and Hu-
man Factors (IfADo) by online advertisements, and compensated
with 10 euros/h for their time spent and travel expenses. They pro-
vided written informed consent and procedures were approved by
the local ethics committee. Participants were excluded from the
study if they met any of the following criteria: intake of psychoac-
tive medication, presence of a metal object/implant in their brain,
skull, scalp, or neck, implantable devices (e.g. cardiac pacemaker),
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any neurological or psychiatric diseases, epilepsy or cardiac disease,
history of traumatic brain injury, pregnancy.

In line with neuroimaging evidence [14], documenting greater
activation of the OFC, insula, ACC, amygdala and striatum in obese
humans, we hypothesized that downregulation of tnM1 via inhib-
itory (i.e., cathodal) stimulation would reduce self-reported appe-
tite. Participants took part in 3 stimulation sessions (anodal,
cathodal, sham), separated by at least 48 hours. In each session, par-
ticipants were first asked to rate their hunger (baseline) via a visual
analogue scale (VAS), with the indication of the minimum and
maximum at the ends of the segment (not hungry vs. extremely
hungry). Participants were asked to bisect the line according to
their subjective sensation of hunger.

Next, the left tnM1 hotspot was identified using Transcranial
Magnetic Stimulation as described previously (e.g., 11, 12, 13).
Next, they provided a short verbal description of the content of a
set of 40 photos showing individuals eating different types of foods.
To administer tDCS, 2 rubber electrodes (5 x 7 cm) were covered
with saline-soaked sponges and positioned on the scalp region
overlying the left tnM1 (target electrode) and the right mastoid
process (return electrode). For sham stimulation, current was
ramped up (30s) and then immediately ramped down (30s), and
then maintained at 0 mA. Participants were blind to the stimulation
condition. The order of stimulation conditions was counterbal-
anced among participants (latin square balancing). During tDCS,
we drove participants’ attention to the photos by asking to observe
and verbally describe each photo. Following tDCS, participants pro-
vided another VAS rating of their hunger.

Self-report ratings were analyzed using repeated measure
ANOVAs. Two participants provided an outlier response (>3 SD)
in the anodal and cathodal sessions. Therefore, we decided to
remove these data from the analysis. In a first analysis we ensured
that no difference in baseline hunger ratings could be found across
the three sessions [F; 47 = 2.590, p = 0.087, n;z, = 0.109]. Ratings
following tDCS were then computed relative to baseline ratings
(ie., LS 5;322,75:5;2':: score) ¥ 100). A second analysis showed signif-
icant changes in post-tDCS ratings between sessions
(F2,42 = 3.349, p = 0.044, n% = 0.137; Fig. 1A).

Scheffe post-hoc tests documented a significant difference in
hunger following cathodal-tDCS (M = 11.75% + 3.85) relative to
sham-tDCS (M = 30.85% + 6.94; p = 0.047). No significant differ-
ence emerged by comparing anodal vs. cathodal (p = 0.277) or
sham (p = 0.651) stimulations. Finally, we observed no significant
correlation between self-reported hunger ratings, Body Mass Index
(BMI) and Council on Nutrition Appetite Questionnaire (CNAQ)
scores (Table 1).
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Fig. 1. A) Self-reported hunger rating following anodal, sham and cathodal tDCS. The results show that cathodal stimulation reduced hunger compared to sham stimulation.
Asterisks indicate significant differences. Error bars denote standard error of means; B) Simulated electrical current flow associated with placement (top figure) of the target
(cathodal) electrode over tnM1 and over a hypothetical control target, i.e., the hand muscle-representing area of the primary motor cortex (hnM1 - bottom figure). The return
electrodes are placed over the contralateral mastoid. The modeling results show stronger electrical fields at the level of the caudate, putamen, insula, OFC-vmPFC, which are strongly

involved in appetite regulation (3), for tnM1 compared to hnM1 stimulation.

Table 1
Results of correlation analyses plotting BMI and CNAQ scores with self-reported
hunger ratings in the three stimulation sessions.

Anodal Sham

BMI r=0.194,p = 0374 r=-0.264,p =0.212
CNAQ r=-0.027,p=0.900 r=-0.086, p=0.687

Cathodal

r=0.042, p = 0.855
I = 0.047, p = 0.828

Overall, cathodal-tDCS over the left tnM1 selectively reduced
self-reported hunger, as compared to sham-tDCS. Interestingly,
Siep et al. [15] have shown that cognitive suppressing of food palat-
ability thoughts and craving reduces activity in the striatum, insula,
and OFC/vmPFC. Lower self-reported hunger ratings following
cathodal (inhibitory) stimulation might be explained by a similar
downregulation of mesocorticolimbic networks. This hypothesis
is supported by anatomical evidence of direct connections between
these networks and tnM1 [10], and, importantly, by our modeling
results (Fig. 1B). Indeed, tnM1 stimulation affected the striatum,
insula and OFC/vmPFC, i.e., key regions of a mesocorticolimbic
network involved in controlling appetite (e.g., 3), and such involve-
ment was not observed when modeling a nearby control region.
Therefore, cathodal-tDCS over tnM1 might have resulted in a direct
suppression of mesocorticolimbic activity, leading to a reduction of
subjective hunger.

In conclusion, our findings highlight tnM1 as a potential cortical
target for hunger downregulation. These findings may have implica-
tions for treating disturbed appetite control and/or eating disorders,
and possibly for treating other disorders of the mesocorticolimbic
system.
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