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Introduction

This chapter revolves around the phenomena and neural mechanisms
underlying the human capability to empathize with the actions, emotions,
and feelings of other individuals. Special attention is paid to the neural
activity induced by observation and imagination of others’ pain. It will be
shown that representing others’ pain brings about the activation of neural
structures largely overlapping with those activated during the experience
of pain on oneself and that neural structures involved in both emotional
and sensorimotor processing may be recruited during empathy for pain.

Pain is an unpleasant subjective, sensory, and emotional experience
associated with actual or potential tissue damage [1– 4]; and has a pro-
tective function related to the implementation of escape reactions. Thus,
it is closely linked to the motor system [2, 5]. Sensory-discriminative com-
ponents (e.g., evaluation of locus, duration, and intensity of a noxious
stimulus) and affective-motivational components (e.g., unpleasantness of
the noxious stimulus) contribute to the experience of pain [1–3]. Sensory
and emotional components are represented in separate nodes of a com-
plex neural network referred to as the “pain matrix” [6–9]. While the neu-
ral processing of pain perception has been widely studied, much less is
known about the neural underpinnings of empathy for pain.

The term “empathy” is the English translation of the German word
Einfühlung. This term was introduced into the psychology of aesthetics by
Lipps [10] to indicate the experiences of individuals while contemplating
pieces of artwork. The extension of this concept to the domain of inter-
subjectivity supported the notion that empathy is inherently linked to an
inner imitation process [10].
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Empathy plays a fundamental social role insofar as it allows the
interindividual sharing of experiences, beliefs, aims, and inner states. It is
widely held that empathy plays an important role in psychoanalysis and
psychoanalytic therapy [11–13]. For instance, in Jokes and Their Relation
to the Unconscious [14], Freud used this concept (influenced by the work
of Lipps, which he profoundly admired) to designate the process of put-
ting oneself into another’s position, either consciously or unconsciously.
According to Kohut [15, 16], empathy allows the therapist to understand
what is going on inside the patient’s mental life in an “experience-near”
way. This would imply that the therapist had to place himself/herself into
the mental life of the patient through a process of “vicarious introspec-
tion” [15]. A basic aspect of empathy in the psychoanalytic tradition
appears thus to be related to the experiential understanding of others’
mental states. This view of empathy seems tightly related to the accounts
of empathy developed in the philosophy of mind, psychology, and neuro-
science, and based on the notion of “simulation.” According to simulation
theories (ST) we understand others’ behavior and mental states by putting
ourselves in the “mental shoes” of others and thus covertly replicating
their inner states in our own mind [17–27]. According to the neuroscien-
tific formulation of this notion, empathy implies that perceptual, motor,
or emotional states of a given individual activate the corresponding neu-
ral representations in another individual who observes that state [24–27].

Neural Representation of Physical Pain

Pain is a complex and enigmatic feeling that typically signals actual or
potential tissue damage. The experience of pain can be described along
two main phenomenological axes: (i) the sensory-discriminative dimen-
sion, comprising spatial, temporal, and intensity properties of pain; and
(ii) the affective-motivational dimension, related to the unpleasantness of
the stimulus, as well as the behavioral and autonomic reactions it evokes
[1–3].

Consistent with the multidimensional view of pain, neuroimaging tech-
niques (such as positron emission tomography, PET; and functional mag-
netic resonance, fMRI) demonstrate that a complex neural network,
referred to as the “pain matrix,” is involved in the experience of pain [6–9].
Sensory and affective components of pain are mapped in two major sepa-
rate nodes of the pain matrix, namely the sensorimotor and the affective
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node. The sensorimotor node of the pain matrix includes the primary (S1)
and secondary (S2) somatosensory cortices (and also sensorimotor struc-
tures, such as cerebellum, premotor, and motor areas). Animal studies
demonstrate that somatosensory cortices receive noxious and innocuous
somatosensory input from the somatosensory thalamus [2–30] and contain
nociceptive neurons that code key features of the sensory-discriminative
dimension of stimulus processing such as spatial, temporal, and intensive
aspects of innocuous and noxious somatosensory stimuli [30–34].
Accordingly, neuroimaging studies in humans indicate that S1 and S2
process sensory features of pain and display a somatotopical organization
[6, 8, 35–39]. Lesions to these areas may induce deficits of pain sensation in
brain-damaged patients [40, 41]. For example, Ploner et al. [41] observed
that a patient who had suffered a stroke that encompassed S1 and S2 did not
experience a painful sensation when a hot laser stimulus was applied to the
affected arm, indicating that intact somatosensory cortices are necessary
for the normal experience of pain sensation. However, the patient reported
an ill-localized and ill-defined unpleasant feeling in the absence of a clear
pain sensation, suggesting that pain affect was present in the absence of
pain sensation.

The affective node of the pain matrix includes at least the anterior cin-
gulate cortex (ACC) and the insular cortex (IC) [42–50], which are phylo-
genetically old regions and are considered to be components of the clas-
sical limbic system [51] and of MacLean’s “visceral brain” [52].

In primates, ACC receives input from medial thalamic nuclei that con-
tain nociceptive neurons, including nucleus parafascicularis and the ven-
trocaudal part of nucleus medialis dorsalis [53, 54]. Direct pain input to
the ACC is further suggested by the observations that painful stimuli
evoke potentials over the human anterior cingulate gyrus and that single
nociceptive neurons are present in the ACC of humans [55, 56], monkeys
[57], and rabbits [58]. Neuroimaging studies have emphasized the role of
the ACC in the perceived unpleasantness of physical pain [6–8]. Rainville
et al. [49] used hypnotic suggestion to modulate the perception of
unpleasantness during noxious stimulations. When the experimental sub-
jects were influenced to perceive the noxious stimulations as highly
unpleasant there was a concomitant increase in the activity in the ACC
compared with when the subjects were influenced to perceive the same
stimulation as less unpleasant [49]. However, the activity in the
somatosensory areas was unaltered. In a similar vein, studies further indi-
cate that increasing levels of ACC activity correspond with increasing lev-
els of self-reported pain unpleasantness and distress [59, 60]. Thus, indi-
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viduals who are dispositionally pain-sensitive show more ACC activity
and report greater levels of perceived distress to painful stimulation [61].

The IC also receives direct thalamocortical nociceptive input in the
primate [54], and has been implicated in autonomic regulation [62, 63].
The implication of IC in the subjective experience of pain is consistent
with a function of the IC in higher-order processes relevant to homeosta-
tic regulation [54, 64] and awareness of internal bodily processes [65].
Lesions to the IC may produce a clinical condition called “asymbolia for
pain,” or “Schilder–Stengel syndrome,” in which patients show deficits in
the affective-motivational component of pain but preserve their sensory
discrimination. Such patients perceive painful stimuli but do not display
the appropriate emotional responses to painful stimulation [66].
Neuroimaging studies indicate that the affective dimension of pain is
mainly encoded in the anterior sector of the IC (anterior insula, AI) [6–8].

Beyond Nociception

Various physical painful experiences, ranging from being pricked with a
pin to feeling an aching phantom pain [67], are represented in the differ-
ent nodes of the pain matrix. However, pain does not have only a physical
dimension related to tissue injury. Pain is also conceived of as a universal
human experience that is commonly generalized to psychic suffering of
any sort [54].

Interestingly, numerous languages characterize “social pain” (the pain
resulting from social injury, e.g., in cases where social relationships are
threatened, damaged, or lost) using words typically reserved for describing
physical pain (“broken heart,” “broken bones”). Animal lesion and human
neuroimaging studies indicate that the neural circuitry and the computa-
tional processes underlying physical and social pain largely overlap [68,
69]. Interestingly, a recent fMRI study in humans demonstrates that the
same sectors of the ACC that are involved in the perception of painful
stimuli are also activated during the experience of social loss [70].1
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Another indication of pain-related neural activity in the absence of
physical noxious stimulations comes from a recent fMRI study in which
Japanese participants listened to Japanese pain-evoking onomatopoeic
words and nonsense syllables [71]. Listening to these sounds induced an
increase in the fMRI BOLD signal in ACC, suggesting an activation of
affective pain representation (see also Chapter 10 in this volume).

Although pain has been described as an essentially private subjective
experience by some philosophers [72, 73], neuroscience studies support
the view that pain processing has a fundamental social dimension that
may extend to basic levels of neural processing.

Studies on empathy for pain further support and expand this view. In
the following paragraphs we show that both affective and sensorimotor
representations of the pain supposedly felt by a model are mapped in the
observer’s neural circuitry dedicated to processing the pain felt by one-
self. We also discuss the important role of the motor system in the per-
sonal experience of pain and in some aspects of social cognition. These
notions may allow us to construct a neuroscientifically based concept of
empathy.

Pain and the Motor System

Pain is closely linked to action systems that can be considered as the divi-
sion of the pain matrix (part of the sensorimotor node) involved in the
implementation of appropriate reactions to actual or potential noxious
stimuli. Nociceptive stimuli can elicit a series of defensive or reactive
responses, such as withdrawal reflexes, avoidance behaviors, and emo-
tional-motor reactions [2, 74, 75]. Moreover, chronic pain affects motor
control by limiting and impairing not only actual movements [76] but
also their covert mental simulation [77, 78]. Furthermore, electrical
[79–81] or magnetic stimulation [82] of the primary motor cortex (M1) in
patients suffering from intractable chronic pain (e.g., phantom pain) can
attenuate their symptoms; in addition, pain severity in amputees increas-
es with the shrinkage of the limb representation in M1 [67, 83]. Although
the physiological basis of these phenomena is largely unknown, they hint
at bidirectional influences between pain and motor systems; thus, specif-
ic activity in the motor systems influences activity in nociceptive systems
and is influenced by it. Accordingly, some neuroimaging studies have
shown that changes of metabolic activity in M1 and other motor-related
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structures can be induced by the delivery [8, 50, 84, 85] or even anticipa-
tion [86, 87] of painful stimuli. More reliable results have been observed
by means of a neurophysiological assessment, such as transcranial mag-
netic stimulation (TMS).2 TMS studies in humans show that a strong
reduction in the excitability of corticospinal motor systems occurs in
association with different types of nociceptive stimulation [88–91]. This
motor inhibition is likely to represent the electrophysiological correlate of
a defensive, withdrawal reflex.

All these studies demonstrate the important link between pain and
motor systems. In the section entitled “The sensorimotor side of empathy
for pain” we will show that this link may also occur at a social level. But
first we will focus on the role of the motor system in social cognition and
empathy.

Motor System and Mirror Neurons

Recent research in nonhuman and human primates has pointed at the role
of motor systems in higher-order cognitive processes [92–94].
Particularly relevant to the present discussion is the discovery in the mon-
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2 Transcranial magnetic stimulation (TMS) is a powerful, noninvasive neurophysiologi-
cal technique based on Faraday’s principles of electromagnetic induction. A brief pulse
of current flowing through a coil of wire generates a magnetic field. If the magnitude of
this magnetic field changes over time, then it will induce a secondary current in any
nearby conductor. For brain stimulation, a pulse is produced in a coil held over a sub-
ject’s head. As a brief pulse of current is passed through it, a magnetic field is generated
that passes through the subject’s scalp and skull with negligible attenuation. This time-
varying magnetic field induces an electric current in the subject’s brain, causing depola-
rization of cellular membranes and thereby neuronal activation. In many experiments,
single pulses of TMS are applied over the motor cortex. The stimulation of the motor
cortex is able to transsynaptically activate the corticospinal system and to produce a
response in controlateral extremity muscles, the motor-evoked potential (MEP), which
can be recorded by means of electrodes. The amplitude of MEPs is used as a measure of
corticospinal excitability. The amplitude of these potentials is modulated by the beha-
vioral context. Thus, the modulation of the amplitude of MEPs can be used to assess the
central effects of various experimental manipulations. This approach has been used in
basic neuroscience to study the effect of actual nociceptive stimulation on corticospinal
excitability [5], and in cognitive neuroscience to study the modulation of the motor
system during the observation of painful events delivered to others [133] or during the
observation of actions performed by others [98, 99].



key premotor and parietal cortices of a particular population of visuo-
motor bimodal cells called “mirror neurons.” The most remarkable func-
tional characteristic of these neurons is the increase in their firing rate
both when the monkey performs an action, and when he observes a sim-
ilar action made by another human or monkey agent [95–97].

Evidence in support of a motor mirror system (MMS) in humans
comes from a single-pulse TMS study showing that the mere observation
of a given movement brings about a specific increase in amplitude of
MEPs recorded from the muscles that would be recruited during actual
execution of the observed movements [98, 99].

The link between perception and execution of actions is further sup-
ported by behavioral studies showing that execution of a given action is
positively or negatively modulated by observation of the same or a differ-
ent action [100, 101]. Importantly, neuroimaging and neurophysiological
studies in humans indicate that frontoparietal structures known to be
involved in action execution become active during action observation
[102–111]. Moreover, the observation of actions made with different effec-
tors activates different regions of premotor and parietal areas, thus sug-
gesting that the MMS may be organized according to somatotopic rules
[112]. These studies suggest that humans have a MMS similar to that orig-
inally discovered in monkeys. When we observe an action performed by
others, our motor system becomes active as if we were executing the very
same action. This covert mimicking can be conceived as an inner simula-
tion of the action. It has been proposed that simulating others’ actions
may be crucial for action understanding [21– 23, 25, 26, 93, 113–118].
Indeed these inner motor simulations lead to shared states between self
and others and may allow us to directly understand the meaning of oth-
ers’ action without any explicit reflective mediation [23, 26]. Thus, MMS
might constitute a basic system for coding and understanding observed
actions which can be of fundamental importance, not only for motor
learning and imitation but also for other social aspects of cognition, such
as an understanding of others’ intentions and beliefs [97, 119–121].

From Mirror Neurons to Empathy

There is a rapidly growing neuroscientific literature supporting the idea
that we understand other people’s behavior and thoughts, in part, by put-
ting ourselves in the “mental shoes” of others [21–26]. Indeed, several

The Sensorimotor Side of Empathy for Pain 241



authors have proposed that the simulative processes originally discovered
and described in the domain of actions could constitute a basic charac-
teristic of our social brain and of our ability to understand and empathize
with others [23–26].

Empathy is the ability to have a direct experiential understanding of
others’ feelings and inner states [22, 23, 26]. Empathy is deeply grounded
in the experience of our living body [122], and it is this experience that
enables us to directly recognize others as persons like us [23, 123]. As a
body-owner, we can easily grasp, through a process of sharing, the mean-
ing of actions, sensations, or emotions displayed by others [23].

Current neuroscientific models of empathy postulate that a given
motor, perceptual, or emotional state of an individual activates corre-
sponding representations and neural processes in another individual
observing that state [22–24, 27]. Thus, a basic mechanism in the empath-
ic experience may involve the transformation of third-person visual infor-
mation about others into first-person, bodily representations [27, 124,
125].

This feature may be a basic attribute of sophisticated forms of empa-
thy and may be neurally implemented through several types of mirror
simulative mechanisms [22, 23]. In keeping with this notion, a number of
brain systems with mirror properties have also been recently described in
the domain of emotion [126–129] and sensory processing [50, 125,
130–134]. Thus, the MMS may be only one of the systems of our social
brain that allow us to have a direct experiential knowledge about others.

Evidence supporting the idea of mirror activity in a purely sensory
domain has been provided by two recent studies on “empathy for touch”
[130, 131]. Blakemore et al. [131], for example, found common S1 activa-
tions with a topographic organization during the personal experience of
touching stimuli delivered to the face or the neck and the observation of
such stimulations in others.

According to ST, there is evidence to suggest that perception of emo-
tion automatically activates mechanisms that are responsible for the gen-
eration of emotion [25]. For instance, viewing facial expressions triggers
expressions on one’s own face (as measured by electromyography), even
in the absence of conscious recognition of the stimulus [135, 136].
Moreover, fMRI studies indicate that similar networks of motor and emo-
tional brain areas are activated by the perception of emotional expres-
sions and the overt imitation of similar emotions [126, 128, 137]. Lesion
studies indicate that right frontoparietal cortex is necessary for the cor-
rect recognition of emotions from prosody [25, 138].
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Somatosensory-related structures are also crucial for emotion recog-
nition [139–142]. These areas may become active in tasks involving facial
expression judgment [141]. Importantly, lesions to somatosensory areas
in brain-damaged patients [25, 139], or interference with the activity of
these structures obtained by means of magnetic brain stimulation [140],
impairs facial emotion recognition. According to ST, during the recogni-
tion of another’s emotion, specific sensorimotor structures could provide
a somatic description of the experience derived from actually feeling the
same emotion. This may help us to learn about others’ emotional states
[25, 140, 142].

Some direct evidence of a sharing of emotional representations
between self and others comes from studies on the emotion of disgust.
Calder et al. [143] reported the case of the patient N.K., with left IC and
putamen damage, who was selectively impaired in detecting social signals
of disgust from facial expressions, nonverbal sounds, and emotional
prosody. Interestingly, this perceptual deficit for disgust expressions was
mirrored by an equivalent deficit in the phenomenological experience of
the same emotion. Indeed, patient N.K. was less disgusted than controls
by disgust-provoking scenes. The involvement of insula in the recognition
of disgust has also been supported in healthy subjects using fMRI [144].
Consistent with these findings is the fMRI study showing that viewing
another person’s facial emotional reactions to unpleasant odorants acti-
vates sectors of the AI and ACC that are also activated when the subject
himself inhales the same unpleasant odorants [127].

Empathic Mirroring of Others’ Pain

As mentioned in the Introduction, various painful personal experiences
are represented in a complex neural network referred to as the “pain
matrix” [6, 7, 8, 9]. Affectively distressing components (such as unpleas-
antness) and sensory components (such as localization and intensity) of
painful stimuli are encoded in the affective and sensorimotor node of the
pain matrix, respectively. The presence of distinct sensory and affective
components makes pain a particularly interesting model for testing sim-
ulative theories of empathy based on the notion of shared neural repre-
sentations. Undeniably, the empathic sharing of pain representations may
hold a special status in the domain of empathic processes. On the one
hand, sharing affective representations of pain (distress, unpleasantness)
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may represent most directly a predicate for sophisticated forms of empa-
thy, i.e., helping or altruistic behavior and ethical and moral reasoning
[75, 122, 125]. On the other hand, sharing sensorimotor representations of
pain may imply that others’ pain is mapped onto one’s own body. This may
be crucial for social learning of protective behaviors and defense reac-
tions to potentially damaging situations [133, 145].

In this section we present findings that support the notion of shared
neural representations between self and others in the domain of pain pro-
cessing. According to current neuroscientific theories of empathy [22- 27],
the basic simulative mirror mechanisms described in the domain of
action, touch, and emotion may also be at the root of our ability to under-
stand and empathize with the pain of others. The possibility that the
human ability to recognize the pain of others is grounded in a mirror-like
pain system is suggested by the anecdotal report of a patient suffering
from an unusual form of allodynia (a pathological condition in which
nonnoxious touching stimuli are perceived as painful) [145]. This patient
apparently experienced observed pain as pain in himself. For example,
when the patient’s wife experienced a sudden minor injury (e.g., knock-
ing her hand against a table), he would become very agitated, claiming
that it hurt him to witness such accidents. If she merely commented that
she had knocked her fingers, there was no such reaction. Although the
report was anecdotal and no information about the neural circuitry
involved in this type of phenomena was provided, the results have been
attributed to an abnormal “mirror pain” system [145]. More direct evi-
dence of “pain mirror neurons” comes from neurophysiology data on
pain-related processing in human neurosurgical patients [55]. Using
microelectrodes, Hutchison et al. [55] found several nociceptive neurons
in the ACC, including cells that discharged preferentially to mechanical
noxious stimuli. In that study it was noticed that a neuron responded
selectively to the anticipation and delivery of noxious mechanical stimu-
lation (pinching, pinpricks) applied to the patient’s hand. Interestingly,
this cell also responded during the observation of the experimenter
receiving pinpricks in the hand [55].

Recent fMRI studies show that only affective components of the pain
matrix are crucial for empathy for pain, thus suggesting that only emo-
tional representations of pain are shared between self and others [50, 125,
132, 134]. In a first fMRI study by Singer et al. [50], empathy for pain was
induced by means of arbitrary visual cues signaling an impending painful
stimulus to the participant’s romantic partner. Empathy for pain brought
about an increase of fMRI signal in AI and ACC cortices, which are part of
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the affective division of the pain matrix. Importantly, neural activity cor-
related with the subjects’ emotional empathy traits scores.

Neural activity in the affective pain network was also reported in fMRI
studies involving unknown human models, where subjects observed pic-
tures [132] or movies [125] in which potentially painful stimuli were
delivered to hands or other human body parts, or movies depicting facial
expressions of pain [134].

Despite some activations in structures that may be involved in somat-
ic processing, such as the thalamus, brainstem, parietal cortex, and cere-
bellum, found in studies when participants imaged others’ pain [50],
watched facial pain-related behavior [134], or observed potentially
painful situations [132], the authors concluded that only the affective
division of the pain matrix is crucial for empathy for pain.

The Sensorimotor Side of Empathy for Pain

The ability to understand and to experience indirectly the pain of others
may be fundamental to social cohesion [24, 50, 75]. Previous fMRI studies
on empathy for pain indicate that perceiving pain in others mainly
involves cerebral regions known to play an important role in the affective
experience of pain [50, 125, 132, 134]. This “affective resonance” may be at
the base of complex forms of empathy [50], e.g., emotional concern, piety,
and altruistic behavior.3

Do we share with others only emotional representations of pain? From
a developmental and evolutionary perspective, having a detailed repre-
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3 The study of Singer et al. [50] may reflect more directly the activity of such sophistica-
ted forms of empathy. In this study neural activity in ACC and AI correlated positively
with two personality questionnaires assessing the subjects’ emotional empathy trait
(e.g., the tendency to experience feelings of concern and piety in response to others in
distress, and the tendency to desire to help others). In the other fMRI studies involving
unknown human models [125, 132, 134], activity in the affective division of the pain
matrix may imply a more simple mechanism of mirroring others’ unpleasant emotional
state. For instance, in the study by Jackson et al. [132], neural activity in ACC correlated
with the level of the pain ascribed to the model, but not with the same personality que-
stionnaire adopted by Singer et al. [50]. Interestingly, both high and basic levels of empa-
thic emotional mechanism are mapped in the same emotional neural structures (ACC
and AI).



sentation of the source and nature of others’ pain may be crucial for sur-
vival. Some authors have speculated that, during infancy, avoidance of
noxious stimuli may be facilitated by early recognition of others’ pain
[145]. We posit that mirror mechanisms that map detailed sensory repre-
sentation of others’ pain (e.g., locus and intensity of a noxious stimulus)
onto one’s own body may be fundamental for the social learning of escape
or avoidance reactions to noxious stimuli.

Why has previous fMRI on empathy for pain failed to find specific
somatic activations? The simplest explanation4 is that previous studies
may have adopted nonbiological relevant visual stimuli for evoking pain
body-mapping, such as static pictures of potentially painful situations
[132], very superficial injections in the hands [125], or stimuli in which
the body was not directly shown [50, 134].

One may speculate that body mapping of others’ pain may occur espe-
cially when the visual scene is of functional relevance for the individual
(e.g., when the stimuli are shocking or very intense). Thus, in a recent
study we presented subjects with “flesh and bone” painful stimulations
shown on the body of a human model [133]. We used TMS5 to record
changes in corticospinal motor representations of the hand muscles of
individuals observing needles penetrating the hands or feet of a human
model or noncorporeal objects (Fig. 1a). Videos depicting static hands
and feet and Q-tips touching the same body parts were used as control
stimuli. We found a reduction in amplitude of MEPs that was specific to
the hand muscle that subjects observed being deeply pricked (Fig. 1b).
No inhibition of the muscles of the hand was found during observation of
harmless touching stimuli or needles in feet or noncorporeal objects.
Importantly, this motor inhibition was clearly related to the observer’s
subjective empathetic rating of the sensory, but not affective, qualities of
the pain ascribed to the model. In other words, the largest motor inhibi-
tion was found in the participants who evaluated as most intense the
model’s pain [133] (Fig. 1c).

We interpreted the observational pain-related motor inhibition as
reflecting the activity of a simulative mirror mechanism that extracts
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4 For an alternative hypothesis see Singer and Frith [149].
5 As reported above, previous TMS studies indicate that actual nociceptive stimulations
bring about a decrease in excitability of the corticospinal motor system [5, 88, 89, 90, 91].
That is, pain reduces the amplitude of the MEP induced by TMS. This motor inhibition
may represent the corticospinal correlate of a defensive withdrawal reaction.



basic sensory qualities of the model’s painful experience (location and
intensity of the noxious stimulus) and maps them onto the observer’s
motor system according to topographical rules [133].6 This hypothesis
was strongly supported by the muscle specificity and by the link between
MEP inhibition and the intensity of the pain attributed to the model.

Motor responses to one’s own pain allow freezing or escape reactions,
and ultimately survival. The observational pain-related motor inhibition
indicates that similar motor responses occur as a result of observation of
“flesh and bone” painful events in others [133].

It is worth noting that neuroimaging studies indicate that anticipation
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Fig. 1. a A magnetic pulse was delivered over the left primary motor cortex during the observation
of different types of video-clips. Motor-evoked potentials (MEPs) induced by transcranial magnetic
stimulation (TMS) were recorded from the first dorsal interosseus (FDI, in the region of the index fin-
ger) and the abductor digiti minimi (in the region of the little finger) of the observer’s right hand. b
Examples of MEPs recorded from the FDI (top) and the ADM (bottom) muscles during the observa-
tion of the model’s static hand (right) and of a needle deeply penetrating the FDI region of the
model’s hand. Note the specific reduction of amplitude of MEPs recorded from FDI muscle during the
observation of a syringe penetrating the model’s FDI region. c Amplitude changes of MEPs recorded
from the FDI during the observation of pain with respect to the static hand correlated with the inten-
sity of the pain ascribed to the model

6 Alternative interpretations, such as the shift of attention to the target body part, or the
predictive motor imitation of the model’s behaviour, were not likely based on the pro-
prieties of the neurophysiological results (inhibition rather than facilitation, and muscle-
specificity). A discussion of these alternative hypotheses is provided by Avenanti et al.
[133].



of painful stimuli being administered to one’s own body increases the
hemodynamic signal in several regions of the pain matrix [46, 87, 146,
147]. These activations triggered by pain anticipation may also include
somatotopical organized spots in the primary sensorimotor cortices (M1,
S1) [86, 148]. According to shared representation models [24, 27], it is pos-
sible that the simulative mirror responses triggered by the observation of
“flesh and bone” painful stimulations in others may reflect anticipation of
pain in oneself [132, 133, 149]. The selective embodiment of others’ pain
in the observer’s corticospinal system, sensitively more than emotionally
denoted, may thus be crucial for the social learning of reactions to painful
stimuli in that it may help the observer’s corticospinal system to imple-
ment specific escape or freezing reactions before painful stimuli are actu-
ally experienced [133].

By means of neurophysiological techniques such as somatosensory-
evoked potentials (SEPs) and laser-evoked potentials (LEPs) (that allow
direct testing of activity within S1 and S2, respectively), we recently found
support to the idea of pain sensorimotor representation sharing [150,
151]. In those studies, we found that some brain potentials evoked by
somatosensory [151] and nociceptive stimulations [150] that originated
from somatosensory cortices were selectively modulated by the observa-
tion of “flesh and bone” painful stimulations in others. In keeping with
our TMS study, such potentials were highly linked with sensory, but not
affective, components of pain. Preliminary fMRI data from our laborato-
ries indicate that premotor and multisensory parietal structures may par-
ticipate in such a mapping of sensory components of others’ pain.

Conclusions

In humans, empathy for pain may rely not only on affective-motivational
[50, 125, 132, 134] but also on fine-grained somatic representations [133].
This supports the notion that empathy is based on different types of sen-
sory, motor, and emotional simulative mechanisms [22–24, 27].

It may be possible to think of at least two forms of empathy linked to
one another in an evolutionary and developmental perspective. A com-
paratively simple form of empathy, based on somatic resonance, may be
primarily concerned with mapping external stimuli onto one’s own body
[133]. This mapping may be important for learning of reactions to pain
[133, 145]. A more complex form of empathy, based on affective reso-

248 Alessio Avenanti, Salvatore Maria Aglioti



nance, may deal with emotional sharing [50, 125, 132, 134] and with the
evaluation of social bonds and interpersonal relations [50].

All in all, studies on empathy for pain indicate that the affective and
sensorimotor divisions of the pain matrix are important nodes in the
complex neural network recruited not only during the personal experi-
ence of pain [5–9, 50, 84–91] but also during empathy for others’ pain [50,
125, 132–134].

A direct matching of specific sensory aspects of others’ pain occurs in
sensorimotor structures of the pain matrix [133], whereas emotional
components of others’ painful experiences (along with other-oriented
compassion feelings) are coded in the affective division of the network
[50, 125, 132, 134]. Such a sensorimotor and affective mapping of others’
pain components may allow us to have a direct experiential empathic
understanding of others’ painful experiences that does not necessitate any
explicit reflective mediation. In order to understand others, we use our
internal body representations.

Hence, empathy for pain may take different forms in different nodes of
the complex neural network that represent sensations, feelings, and emo-
tions linked to the experience of pain. Philosophers have emphasized that
our bodily sensations are intrinsically private [72, 73]. However, cognitive
neuroscience suggests that, at least in humans, the social dimension of
pain extends even to the very basic, sensorimotor levels of neural pro-
cessing.
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